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Techniques for applying time series fundamentals to forecasting hurricane movement are

thoroughly examined in this research The objectives are- (1) to modify Dr. Thomas Curry's

threshold autoregressive time series model to improve its ability to forecast hurricane movement,

(2) to forecast the maximum sustained wind speed for a hurricane, and (3) to identify if wind

speed should be included as an explanatory variable to aid in forecasting hurricane movement.

Eleven different models to predict the latitude, longitude and maximum sustained wind

speed are compared and contrasted with Curry's bivariate time series model. The results showed

the modifications allow significant forecasting improvement to Curry's model in the 6-, 12-,

24-, 48- and 72-hour forecasts. The model recommended by this research shows a significant

improvement in mean and variance of the overall forecast errors.

One of the emerging interests of the hurricane forecasting community is the ability to

predict the intensity of a storm. An added feature of the recommended model is that it would

predict the maximum sustained wind speed of the 72-hour forecast with mean error of less than

4 nriiles per hour. This makes the recommended model even more valuable to the hurricane

f
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INCLUDING MAXIMUM SUSTAINED WIND SPEED

IN A TIME SERIES MODEL TO

FORECAST HURRICANE MOVEMENT

1. Hurricane Forecustiny

This research will focus on predicting hurricane movement using a mathematical model,

specifically a time series model. Models such as this can aid the hurricane forecaster in

predicting where a hurricane may hit a coastline.

Andrew and Hugo; two hurricanes that hit the United States coastline in the last few years

caused billions of dollars in damages and many deaths. It is an occurrence that is all too

familiar, especially for people living in the areas that are in most danger. They know that when

a hurricane is headed their way, it is time to board up the house and prepare to evacuate. The

more warning time they have, the better chance they have to save their lives and protect their

property. They need an accurate forecast of where the hurricane is going to strike.

For example, as hurricane Hugo approached South Carolina, authorities never expected

the hurricane to hit the coast as soon as it actually did, which prevented timely evacuation. In

all, Hugo took 85 lives and caused tremendous amounts of damages. (16:A2) It is possible that

some of these lives could have been spared with more time to evacuate.

In the Florida Keys, a timely forecast of ar approaching hurricane means the difference

between survival and loss. Authorities determine that because of the one road system that

connects the keys to the mainland, it would take *at least 30 hours to clear the area." (16:A2)



1. 1 Hurricane Forecast Models

Tremendous amounts of research have gone into the prediction of where a hurricane will

hit land with little improvement over the last thirty years despite advancements in computers and

weather monitoring devices. The majority of forecasting models use meteorological information

to predict how a storm will steer. Others use simulation and statistical information to get a best

guess of a storm's path.

The major United States agency involved in hurrcane movement is the National

Hurricane Center (NHC) in Coral Gab!es, Florida. While tracking an active hurricane, the NHC

issues forecasts at least every 6 hours and predicts storm ir avement for lead times up to 72 hours

(4:3). They use several computer models to analyze storm movement (11:522). The

experienced and skilled forecaster would combine the output of these models with other

accumulated data and *using his best judgement issue a forecast' (4:5-6). Still many feel that

the hurricane forecasts are not timely enough or accurate enough to guarantee the safe evacuation

of large, densely populated areas. In fact "after 30 years of advances in weather -satellites,

computer forecasting models, and basic research, forecasters had reduced the errors in predicting

the paths of hurricanes by just 14%" (7:917). This is not encouraging when facing the

destructive capabilities of a hurricane like Andrew.

1.2 Hurricane Forecasting with Time Series Models

Dr. Thomas Curry, who has done some of the most recent work in improving current

forecasting procedures, feels that *the crux of the problem rests with the inadequacy of the

present forecasting procedures" (4:2). He goes on to explain that in 1985 the National Hurricane

Center (NHC) was using forecasting packages and computer systems which were thought to be

2



outdated and slow. Their 72-hour forecasts generally took two to three hours to develop with

an average forecast error of 435 nautical miles. This error leaves populated areas with the costly

decision to either evacuate or take the chance that the huricane will miss their area. Greater

accuracy is required in predicting hurricane landfall in order to insure timely evacuation.

Through the use of a nonlinear time series forecasting model, Dr. Curry was able to

show that the landfall of certain types of hurricanes and tropical storms "can be accurately

predicted by modeling the storm track as a bivariate (latitude and longitude) fifth-order

autoregressive process" (4:v). His model produced forecasts which were slightly better than the

NHC's official forecast.

The objectives of this research are: (1) to modify Curry's threshold autoregressive time

series model to improve its ability to forecast all types of hurricanes, (2) to forecast the

maximum sustained wind speed for a hurricane, and (3) to include past maximum sustained wind

speeds as a explanatory variables to aid in forecasting hurricane movement.

3



II. Theoretical Development and Application

Predicting the movement of a hurricane is a difficult assignment. Nature does not assist

the forecaster by following a set of rules or timetables. Thus, it is up to the forecaster to use

the information available to best predict the destructive path of a hurricane.

Curry stated that Dr. William G. Lesso and T. W. Freeze determined that through the

use of past hurricane tracks, some information can be extracted to aid in predicting hurricane

movement (4:11). The Lesso and Freeze model uses only the current position r rt to forecast

the future movement of a hurricane. Curry expanded this work in two ways: (I incorporating

a time series model which allows past position reports to be used in developing a forecast and

(2) allowing the model parameters to vary over location, in order to more accurately model the

distinctive, position-dependent motion of a hurricane.

This chapter describes the different types of time series models and how they apply to

forecasting hurricane movement. The following areas will be covered:

n Univariate Autoregressive Moving Average (ARMA) Models

a Multivariate Autoregressive Moving Average (MARMA) Models

a Threshold AR Models

a Combining Cross-Sectional and Time Series Data

s Summary of Curry's Methodology

m Research Limitations

In the process of developing these areas, Curry's work will be developed in context and a

number of possible time series models will be proposed for forecasting hurricane movement.

4
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2.1 Univariate Autoregressive and Moving Average (ARMA) Models

Time series modeling assumes that history repeats itself and its methods aim at

discovering the past (historical) pattern of events so they can be extrapolated to forecast the

future (8:363). Time series forecasting techniques are used to predict future values of a set of

ordered observations where the order of the observation is as crucial as the observation itself

(9:30). In other words, information from a time series would be lost if the observations were

taken out of the order in which they were observed. The standard notation for a time series will

be used in this research, in which the time order of an observation is conventionally denoted by

a subscript. Accordingly, the general observation is written as Y,, meaning the th observation

of a time series. This implies that the preceding observation is Y,, and the subsequent

observation is Y,.,. (9:30)

Time series models are used to express forecasts as functions of past values of the time

series. The goal in time series forecasting is to find the function that best describes the nature

of the observations. One approach to mod& ni-g time series is called the Autoregressive Moving'

Average (ARMA) models. An ARMA model represents the observation at time t as a function

of previous obser vations and a random shock, e, In an ARMA model, the series of random

shocks is assumed to be "white noise," which has the statistical property of being distributed

Normally and independently with a zero raean and constant variance.

The first part of an ARMA model is the autoregressive (AR) process; the general

equation, that best defines an AR process of order p, denoted AR(p), is:

=t C4$1 YC- 1 +k Yt.2 + .. %1 Yt,+ e. 1

where C is a constant and • is the parameter which describes the weight given to the i previous

5
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observation for i = 1,...,p. The AR process indicates that future expected values are linear

combinations of p past values. That is, in an AR process of order p, the expected observation

at time t, E(Y,), is a linear combination of the p previous observations, Y,.,..,Y,-,. The order

of an AR model is 'dependent upon the nature of the process being modeled. Specifying a

suitable order of an AR model and thus which past values should be utilized is crucial for

obtaining accurate forecasts. In this research, determining the order of the model will refer to

the specification of AR models.

The second part of an ARMA model is the Moving Average (MA) process which is

characterized by a finite persistence (9:61). MA models are different from AR models as they

assume that the expected observation at time t, E(Yj), is a linear combination of the previous

model errors, e,.l, ... ,et. The general model equation for a MA process of order q, denoted

MA(q), is:

= e•-Ole_ 1 -02e•_ 2 -. .. Oc..et_-q-1Oqeetq (2)

where e, is the parameter which describes the weight given to the error of the i previous model

error for i = 1,...,q.

An ARMA model is a mix of the autoregressive and the moving average models. The

general form of an ARMA model, of order (p,q), is:

yt C+'lyt-1 +42yt_+.. + +4ýPVt._+et-Ole~et-O 2 e,_ 2 -.. •Oqe,-q (3)

6



Makridakis points out that the "advantage of an ARMA scheme is that it includes different AR

models and uses whatever error remains in an MA equation in attempting to further improve

forecasting." (8:229) An ARMA model will allow more capability in reducing the model errors

to randomness than either AR or MA models alone.

Choosing the appropriate order (p,q) of the ARMA model can be difficult since there is

no well-defined selection criteria. This can be ovwcome by following the guidelines of the Box-

Jenkins methodology, which help make ARMA models relevant and applicable in real life

situations (8:230).

Next, this methodology will be summarized briefly, then three important topics relevant

to this research will be addressed: (1) model specification, (2) stationarity and (3) predicting

hurricane movement with a univariate ARMA model.

2.1.1 Box-Jenkins Methodology The first step in the Box-Jenkins method is to

postulate an order for an initial ARMA model. It is possible to identify a tentative ARMA

model by examining the autocorrelation function of the time series, which measures the strength

of the relationship between observations in the series that are the same number of time lags apart,

and its partial autocorrelation function, which shows the relative strength of the relationship that

exists for varying time lags (8:2,s,). Once the model has been postulated, the next step is to

estimate the parameters of this tentative model. This is done with standard estimation methods

such as maximum likelihood estimation or least squares estimation. After the model parameters

have been estimated, the residual differences between the observed time series values and those

estimated by the model should appear to be white noise for the fitted model to be "adequate".

This can be determined by examining the autocorrelation function of the residuals. If the

7
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residuals do appear to be white noise, then the model is considered adequate. Otherwise, one

must return to the model identification stage, select a different order for the model and step

through the procedures again (8:245-250). Once the model has been shown to be adequate, the

analyst should then look for redundant parameters. Finally, once these are eliminated, the

resulting model can be used for forecasting purposes.

In his dissertation, Curry discusses ARMA models hut limits his methodology to

autoregressive models only. He implicitly incorporates possible moving average components by

noting that moving average models can be approximated by truncated finite AR models. This

decision is necessitated by the small number of observations within a hurricane track, since these

short tracks make the MA parameters difficult to estimate. Consequently, Curry suggests that

inclusion of an MA parameter is more complicating than helpful. Since we concur with his

assessment, only autoregressive models will be addressed from this point on.
/

2.1.2 Model Specijfication As in regression analysis, one concern in time series model-

building is specifying the order of the model, or determining which explanatory variables (i.e.,

previous observations) ought to appear in the model and which ones should not Pindyck and

Rubinfeld explain that there are trade-offs which are encountered in determining the explanatory

variables. Their analysis shows that the cost of excluding a variable which should appear in the

model is bias and inconsistency, while the cost of adding one or more irrelevant variables is loss

of efficiency. They also point out that with a la'ge number of observations, the loss of degreess

of freedom in adding irr.levant variables is tulikely to be serious. The analyst must decide what

is important in terms of the bias-efficiency tradeoff, with the result dependent upon the

objectives of the analysis.

8
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An initial estimate of a model's appropriateness can be obtained by examining the amount

of variance in the observed time series that is explained by the model. Two of the common

measures of this are the mean squared error (MSE) and the coefficient of multiple determination

(R1). MSE measures the error that is not explained by the model; it is calculated by:

n

T y,-y, (4)
n-b

where n is the number of observations for which forecasts are developed using the model, Y, is

the actual i* observation, Yf, is the forecast of the i* observation and b is the number of

dependent variables in the model. Minimizing the MSE appears to be one reasonable objective

to determine model appropriateness since it accounts for both bias and efficiency (15:131). R 2

measures the proportionate reduction of the iotal variation in the dependent variable associated

with the use of the particular set of dependent variables; it is calculated by:

R2 1,

(Y 1 -Y)(5)

"n Yi

The higher the RI value the more variance is explained by the model. These two measurements

give a good idea of the appropriateness of the model. Both MSE and R2 are usually computed

in relation to the set of observations in developing estimates of the model's parameters.

In the case of comparing different forecasting models, the model that does the best job

forecasting the observations within a separate test set shoulk be the one chosen. One procedure

9
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to compare forecasting models is to compare the average and standard deviation of the forecast

errors when forecasting on the test set. In addition, a more accurate way of measuring actual

predictive capability of a model is to use the model to predict each observation in the test set and

then to calculate the mean of the squared prediction errors, to be denoted by MSPR:

y2 (Y-f1) 2  
(6)

XSPR =_____ n

where n is the number of forecasts, Y, is the actual e observation and Yf, is the forecast of the

i' observation. The MSPR gives a good indication of how well the selected regression model

will predict in the future, since it increases more rapidly than the mean error when many large

errors are present. In the case of multiple models exhibiting statistically equivalent results,

meaning the forecast error average, standard deviation and MSPR of the models are equivalent

to some desired confidence level, the model with the .mramum number of terms would be the

one of choice.

2.1.3 Stationarity In developing models for time series, it is important to know

whether or not the underlying stochastic process that generated the series can be assumed to be

invariant over time. In particular, we usually assume that this means the series mean, variance

and autocorrelation structure do not change over time. If the mean or variance changes over

time (i.e., is nonstationary),

it will often be difficult to represent the time series over past and future intervals of time
by a simple algebraic model. On the other hand, if the process is fixed in time (i.e., is
stationary), then it is possible to model the process via an equation with fixed coefficients
(linear in coefficients) that can be estimated from past data. (15:497)
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Thus, to accurately estimate parameteis for an ARMA model, the time series must be stationary.

Otherwise, the ability to accurately forecast future observations could be drastically diminished.

A time series which is nonstationary in the mean can sometimes be transformed into a

stationary series if it is differenced one or more times. Differencing is subtracting the value of

the previous observation from the current (time t) observation, and doing this for every

observation in the time series, i.e. forming for t = 2, 3, ... , n:

Wt = Yt-Yt-i= AYr. (7)

Thus if we want to build a time series model to forecast values for a nonstationary (in the mean)

series, we can (hopefully) difference the series until stationary, construct a model for this

differenced series, wake forecasts for this series, &nd then remove the effect of the differencing

in the model and its forecasts to develop forecasts for the original series.

Unfortunately, even if a series is stationary in its mean, it may not be stationary in its

variance. In practice, most time series can be made stationary in mean and variance by

lifferencing, but when this is not the case, there is another simple transformation which may be

applied to such processes to make them stationary in the larger sense. "In geneial, whenever the

variance ot a time series changes as the level of the series changes, the series can be made

stationary in the larger sense (in both mean and variance) by log-transformation and then

differencing. Log-transformation and differencing results in a constant variance." (9:52) In

conclusion, a series which is not stationary in its mean and/or variance may lead to incorrect

inferences in the analysis.

11



2.1.4 Hurricane Forecasting Using Univariate ARMA Models In forecasting

hurricane movement, univariate AR models could be used in forecasting latitude and longitude

coordinates separately, although these would not account for any dependence between them.

(Curry assumed there was a significant dependence between latitude and longitude and, therefore,

fit bivariate models Qn.y.) It may be beneficial to fit two separate univariate models for latitude

and ,igitude to use as a basis for comparison with other, more complicated, models. These

univariate models would have'thc- form:

LAt = 1,1t-1 k,2L + p-At_,÷e• (8)

LOt = 42• 1-•Ot-1+ +' • ' +€ 2 ,pLO,-p+e2g; (9)

where LA, and LO, are the latitude and longitude at time t, the e's are the model errors, and the

*'s are appropriate AR model parameters.

2.2 Multivariate ARMA (MARMA) Models

MARMA models are used to apply time series methods where additional variables are to

be included in a, odel to provide additional information to be used in developing a forecast.

--There are two reasons for analyzing and modeling multiple series jointly: (1) to understand the

dynamic relationships among them and (2) to improve accuracy of forecasts, since, when there

is information on one series contained in the historical data of another, better forecasts can result

(21:802). Next, two types of MARMA models that are referred to in the literature will be

distinguished: vector ARMA models and a subset of vector ARMA models identified as transfer

function models.

12



2.2.1 Vector ARMA Models This useful class of models allows for the application of

time series methods to jointly forecast multiple time series using the past history of these series

as predictors. Vector ARMA models allow feedback relationships among the multiple series,

where the forecasts of a series can. depend on the forecasts of other series. The parameter

estimation techniques for vector ARMA models can be quite complex, particularly with the

hurricane track data used in this research. Accordingly, only the subset of vector ARMA models

called transfer functions were utilized in this research.

2.2.2 Transfer Function Models Transfer function models are a unique variation of

vector ARMA models in which time series methods are applied to forecast a single deendent

series with additional series included as predictors. The general transfer function mode* may be

written as

Yt 8 1Yt-1 +8
2 Yt- 2 +. ** Y-+O~---)X-- - s 4',-b-8

+Cozr-c-C1zt-c-1 -. •.- .CZt-C-.

+ (10)

+e

where Y, is the dependent variable, and X, Z, and W are the independent variables. If b, c and

d are greater than zero, the corresponding independent variables (X, Z or W) will be leading

indicators of Y,. The purpose of transfer function methodology is to facilitate determination of

r, s, b, c, m, d and v and the estimation of the parameter values.

When suitably arranged, a transfer function model possesses at best, a triangular

relationship which allows for partial feedback between responses. Box and Tiao describe this

triangular relationship in an example in which "Y depends only on its own past; X, depends only

13



on its own past and on the present and past of Y; X2 depends on its own past and on the present

and past of Y and X,; and so on." (21:802) This means that when there is a feedback

relationship between the variables such that, Y depends on the past of X, and X, depends on the

past of Y, a transfer function cannot account for the feedback; however, another type of vector

ARMA model could.

Curry wanted to account for a dependence between latitude and longitude, but he felt a

feedback relationship was not necessary. In other words, he did not use predicted values of

latitude or longitude as predictor variables for each other. Instead, he accounted for this
/ -

dependence by using two separate transfer functions; one for latitude and one for longitude.

Curry's basic models express latitude at time t (LA) as a function of past latitude and longitude

reports, and longitude at time t (LO) as a function of past longitude and latitude reports as well:

LAt = 11,iLAtj+111, 2LAt' 2 +* +4011,PLt-A P
+ C 2 , iLOt-, +* 12 ,2 LOt-2 +' *+12, Lot-, (11)+ Ci 

...•

LOt 4 12 1 , iLA.-1 +O2 1,2 LAt- 2 +. . .21,pLAt-P

+ * 2 2 , LOt-1+t 2 2, 2LOt-2+.. +422,:LOt_.r (12)

+ G

where C, and C2 are constants and the O's are the model parameters.

According to Curry, this model can be expressed as a multivariate linear model wherein

the .4's can be estimated via multivariate least squares (4:63-64). He goes on to state that

"although they are biased, the least square parameter estimates converge in probability to the true

parameter values." (4:64) A variation to Curry's model would include wind speed (WS) as a

predictor while keeping both latitude and longitude in the model. This model would be:

14
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LAt = 1,A-+12~-+ -. 1,p~-
+ .1 2, ILOt-,+t 12, 2 LOt- 2+• . • 12, +i.qLOq (13)
+ 413,WSt.,1+4013, 2WSt_2+. • +i3,ZWStr
+¢C

LOt = *21, ILA1i+C21,2Lt-2 + * * +$,PLdAtp
+ C22'ILOt'+$ 22, 2LOt'2 +. ' + @2 qLO"-q (14)
+ 023, WS't-1+ 23 ,2WSt- 2 +, + • 3,_WS-
+,.

WS =* 3 ,,LAt-1+03 i, 2LAt- 2 + 4 * + ,FLAt-P
+ 4,32 •.LO•_. +C32 ,2LOt-.2+' 4• 32,, LOt-q (15)
+ C33, 1. WSt-1 +4 3 3 , 2 WSt- 2 + . 433,rWS*r

+C3

where LA, represents the latitude at time t, LO, represents the longitude at time t, WS, represents

the maximum sustained wind speed at time t and C,, C2 and C3 are constants.

Wind speed would be added based on the advice of both Curry (4:109) and Pike

(14:101), a research meteorologist from the National Hurricane Center. Pike states that

"preliminary tests confirm that the winds are superior to heights (atmospheric pressures at

different altitudes traditionally used in predicting tropical storm steering) as steering predictors

(of tropical storms)." (14:103) It is expected that the inclusion of maximum wind speed as an

explanatory variable will decrease forecast error. Maximum wind speed is used in order to keep

the forecasting models as simple as possible since it was decided that other measures of a

hurricanes winds, including its "wind component vectors" (3) would be rather complicated to

incorporate into a model and would also be cumbersome to use.

Unfortunately, there are two unique complicating factors that do not allow these types of

models to be simply estimated or fit. First, the set of histori.l time series of hurricane track

1
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data which will be used to fit a model is not a single continuous time series but rather is a

collection of multiple time series (i.e., separate hurricane tracks) referred to as cross-sectional

time series. As will be seen, this complicates procedures for estimating the parameters for the

models. Second, to overcome possible large errors in predicting hurricane movement, Curry

allowed his model coefficients to change as a storm moves. This is done by estimating the

nonlinear motion by a number of linear estimates within the context of a threshold AR, model.

These complications will be addressed in the next two sections.

2.3 Threshold AR Models

The movement of hurricanes is not by nature a random phenomenon, but rather,

hurricanes "tend to be steered by the large atmospheric forces in which they are embedded."

(11:352) This steering can be seen in Figure 2. 1, which shows four typical hurricane tracks over

the North Atlantic basin. Notice tl'at the storms

tena to move first to the west and north, and then

turn more to the north and east as they move

progressively northward. Curry developed his

model so that the model parameters could change

as the storm moved northward in order to account

for this type of movement. He accomplished this

by using a threshold AR model. ________________

thrshld R odl i bsicll aFigure 2. 1. Four Typical
A &eshldAR odl i 'bsiall aHurricane Tracks over the North

Atlantic Basin.

piecewise linearization of a nonlinear process. It

accounts for the motion of the hurricane by
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allowing the parameters to change as the storm crosses latitude thresholds. This allows the

forecast parameters to remain constant until the next threshold is crossed, since the nature of the

storms is believed to change, slowly (4:23). By "segmenting the North Atlantic into latituae

bandso (4:107), and estimating the parameters for the separate time series in each band, the

motion of a storm can be embodied by *piecing* together the models in the separate bands. The

latitude bands that Curry chose are: 10-15N, 15-20N, 20-25N, 25-30N, 30-35N, 35-40N and

40-45N in degrees latitude (see Figure 2.2). Accordingly, Curry develops seven separate and

unique models, one for each latitude band (4:113).

Ini this research, a threshold model will be constructed by taking all the position reports

for each storm which lie within a latitude band and estimating the AR parameters for the model

____________________________ within that band using only those observations

and the five most previous position reports.

Using the previous five position reports

40 -45 ensures that an AR model of order less than

35 ~ or equal to five would be appropriate to be
30-35
25 -30 used immediately once a storm crosses a

-20 -25
15 -20threshold. If there was no overlap (i.e., if

10 -15 the five most previous position reports were

Figure 2.2. The Latitude Band for the- not included), it would not be appropriate to
Threshold AR Model.

develop forecasts immediately when a storm

moves into a new region. For example, using an AR(5) model constructed for that latitude band,

forecasts could not be developed until five position reports had been obtained in that band.

17



Using a five position report overlap allows forecasts to be issued immediately when a storm

moves into that region using the model constructed for that latitude band.

A threshold AR model forecast of a hurricane's next position (6 hours in the future) Will

thus be. made by using the time series model for latitude band within which the most recent

position report lies. Once this forecast is calculated, the next step ahead forecast (i.e., for 12

hours ahead) is made using the time series model for the latitude band in which the first forecast

lies. This model will be the same as the one used for the first forecast unless the first forecast

crossed a "threshold. wThen, the model for the new latitude band would be used. This process

is repeated until the required number of forecasts are obtained.

The threshold AR model thus allows for the AR parameters to change as the storm moves

while still allowing the forecasts to be functions of the past values of the storm's positions. The

evidence supporting the use of a threshold model as described by Curry seems reasonable and

justified. Accordingly, this threshold approach will be utilized in this thesis with the same

latitude bands.

.2.4 Combining Cross-sectional and Time Series Data

In the normal application of time series analysis, there are a large number of time-ordered

observations of the series of interest and, using these observations the goal is to explain and

forecast the future values of that series. By examining the patterns, trends, or persistence of the

past observations, information is gained on future values. However, the life of a particular

hurricane is short, and the goal is to use the movement history of all past storms to predict the

movement of a current storm. According to Pindyck and Rubinfeld,

18



a practical problem of some importance occurs when observations are available for
several individual units (hurricanes) over a period of time. Occasionally sufficient
observations will not be available to estimate either a time series (dealing with
correlations between time periods) or cross-section (dealing with correlations between
individual units) equation, suggesting that some method of combining the data (of
individual hurricanes) be used. The process of combining cross-section and time series
data is pooling. (15:252-253)

It seems appropriate to use information from past hurricane tracks to forecast a current

hurricane's movements. Accordingly, we are not dealing with one long, continuous time series

but, rather, with a collection of many smaller time series driven, we assume by a common

underlying natural process; i.e., we assume hurricanes behave or move according to a common

natural process.

The problem lies in having to combine the necessary information from many past

hurricanes to forecast the movement of a single current hurricane, while also incorporating

information about the present storm's history. One complication arises in estimating the model

parameters, since many observations are needed to keep the variance of the parameter estimates

small. While it seems obvious that this could be accomplished by combining the hurricane tracks

"so as to maximize the number of observations" (4:60), it produces quite a unique problem. To

illustrate this problem, we take two tracks, each with four observations:

Tra k1 = [LA1,11 M 1,21,LA, 3 , LA1 ,41 (16)

Tra 2 [LA2, 1 , LA2, 2, LA2, 3,LA 2,4) (17)

If we combined the tracks by ap nding Track, at the end of Track,, we would obtain

Combined [LA1., 1 2 1LA1 , 3 LA1, 4 , ,LA2 , 1 LA2,6,.LA2,7LA 2,] (18)
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This would appear to yield a single track containing eight observations to work with. It would

seem appropriate to fit a time series model to this set of eight observations via traditional time

series methods. Unfortunately, this would not be suitable since the first four observations are

independent from the last four because they arise from two differept storms. Traditional methods

would assume that the first four observations are related to the last four.

The method that Curry used to overcome this obstacle is to estimate the parameters using

the SPSS multivariate linear regression procedure with "the pairwise deletion option" (4:60).

This results in the covariance matrix having a different number of pairs for each off diagonal

element, which in turn has a minor effect on the confidence interval for the associated

coefficient.

There are few other published results relating to the estimation of AR parameters when

dealing with pooled cross-section and time series data. Azzalini (1991) provides one exception

as he develops a "nearly unbiased estimate of the AR(1) parameter" for dealing with pooled data

in a time series (Azzalini:273). Azzalini's equation:

= 2" r- (19)
T T-1.

gives a good estimate of p, which can be used as the 4,, estimate. Unfortunately, this is not
/

appropriate for our situation for two reasons. First, it is only appropriate for an AR(1) process

which we find restrictive. Secondly, Azzalini's equation assumes that each observed time series

is of the same length. This is not the case for the hurricane data since each storm has a different

number of position reports.
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Another published technique is developed by Pindyck and Rubinfeld; it is a procedure

called the "Time series Autocorrelation Model." They suggest "that one ought to consider

pooling cross-section and times-series data under error assumptions involving time series

autocorrelation (error terms from different time periods are correlated) as well as cross-section

heteroscadisticity (constant error variance)." (15:258)

An example of how this might be accomplished using a latitude (LAT) model that uses

wind speed (WS) as an explanatory variable is:

LAIt = a+WS P+e1_t = Pleit.l+Uit (20)

where

E(Cet 2 ) =2

E(eCitCjt) = 0 E(eitl. = 0 i , j (21)

uil-NT( 0, 2)

and the i={i' storm i- ,...,N) and t-=-{t time period, t=2,...,T).

The assumptions imply that cross-section disturbances (storms) are uncorrelated and have
constant variance but time series disturbances are autocorrelated. We allow p to vary
from individual unit to individual unit but fix each error structure to involve first-order
serial correlation. We estimate each p, (for each storm) and then use the estimated p, as
a basis for the generalized least-squares regression. To estimate p,, i = 1,2,...,N, we
estimate the entire pooled sample using ordinary least squares. Since the parameter
estimates are consistent (as well as unbiased), we can use them to calculate the regression
residuals e,. We then estimate each p, consistently as follows:

T

A, t-2 for i = 1,2...,N (22)
T

t-2
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We proceed by forming the generalized difference form of the original model:

LAT -,APT,,. a(-
+ - _(23)

The generalized difference form can now be estimated by applying ordinary least squares
to the pooled model. NT - N observations are used in the estimation, since one
observation from each individual unit is dropped in the generalized differencing process.
Corrections for heteroscedasticity or cross-section correlation between individual units "
would proceed in a fashion similar to that just described. If heteroscedasticity had been
present in the model, for example, we would use the residuals of the generalized
difference model (pooled) to estimate the individual error variances and then apply
weighted least squa-es in the third stage of the estimation process. (15:258-259)

The cross-section explanatory variable could be thought of as the individual storms, where we

could assume that the storms are independent of each other (uncorrelated) but that they have

constant variances (velocity-stationary) but the time series disturbances (the movement over time)

are autocorrelated. This technique will not be used in this research due to time constraints.

Instead, we will adapt a variation of Curry's approach.

2.5 Review of Curry's Methodology

The objective of Curry's research focused on providing greater accuracy in predicting

hurricane landfall in order to insure timely evacuation. His research focused on using a bivariate

(latitude and longitude) fifth-order autoregressive model that could be used to predict the

movement of a hurricane. He used a threshold approach to allow the model parameters to

change as the storm moves to a new region of the ocean. This section will review Curry's data

manipulation, model identification, parameter estimation, fore-asting techniques, and model

validation.

22
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2.5.1 Data Manipulation Curry used the "best track" storm data from the National

Environmental Satellite Data Information Service that contained position reports of subtropical

storms, tropical storms and hurricanes from 1886 to 1983 (4:131). Curry initially deleted all

storms that occurred before 1945 due to concerns about the accuracy of the observations (4:134).

Next, he limited his data to only the storms that occurred in the Northern Atlantic Basin because

this is the United States coastal region of concern. Then, all storms that did not attain more than

subtropical status (maximum wind less than 45 knots) were eliminated (4:40).

Curry then divided the hurricane data into seven latitude bands. Each band would cover

position reports with latitudes within a five degree interval. The latitude bands are: 10-15N, 15-

20N, 20-25N, 25-30N, 30-35N, 35-40N and 40-45N in degrees latitude.

After getting the data into workable sets, Curry's next step involved determining the

stationarity of the storms. Determining the "hurricane stationarity" of each storm was key to

Curry's research. He states that in order to develop models of the latitude series and the

longitude series, it was necessary to develop a procedure to determine if the series were weakly . .

stationary (4:30). He explains that,

While it would seem that a hurricane which is continually in motion could never---
be considered to be stationary, this is not typically the case. If a storm is moving
due west (W) or east (E), the latitude series remains constant. In this case the
hurricane is latitude-stationary, i.e. the time series LA,.,, LA,-,, ... , LA4 varies
about a constant mean. A storm moving due north (N) or south (S), is longitude-
position stationary.

If the storm is moving northwest (NW), northeast (NE), southwest (SW),
or southeast (SE), it is neither latitude-posidon stationary nor longitude position
stationary. When this occurs, stationarity can be induced by differencing
(calculating the change per unit time interval) the latitude and longitude series.
If the new series (which now represents velocities) vary about a constant mean,
the hurricane is said to be latitude-velocity and/or longitude-velocity stationary.
It describes a storm moving (say NW) at constant velocity and is used to predict
the next velocity, i.e. the next change in position ... If the hurricane is
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accelerating (say in latitude), the latitude series must be differenced twice to
induce stationarity. The process of determining whether the latitude and longitude
series are stationary in position, velocity, or acceleration, results in nine possible
classifications for a particular track (see Table 2.1). (4:35-36)

Table 2.1. Curry's Hurricane Stationarity Classifications.

LONGITUDE

LATITUDE JPOSITION VELOCITY J ACCELERATION

POSITION 1. 2. 3.
Standing Still Moving East or Accelerating

West West or East

VELOCITY 4. 5. 6.
Moving North Moving NE, SE, Recurving N,S
or South SW, or NW or E,W

ACCELERATING 7. 8. 9.
Accelerating Recurving W,E Accelerating
North or South to N,S NE, SE, SW, or

NW

Curry used an ad-hoc procedure in each latitude band to determine the stationarity

classification of each storm. In this procedure, he calculated the latitude lag-one least squares

regression coefficient and, if it was less than 0.8, the storm was considered latitude position-

stationary If the coefficient was greater than or equal to 0.8, the lag-one latitude series was

differenced, and a similar coefficient calculated for the differenced series. Then, if this

coefficient was less than 0.8, the storm was considered latitude velocity-stationary. If still

greater than 0.8, it was differcnced a second time and another similar coefficient was calculated.

Once again, if this was less than 0.8, the storm was considered latitude acceleration-stationary.

If not, the storm was discarded. The procedure was repeated for longitude in each latitude band.

The data matrices were then constructed for the stationarity class 5 storms. There was one data
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matrix for each latitude band with the rows made up of one differenced observation and its first

four lagged differences.

Curry developed forecast models for only the stationarity class 5 storms. First, this class

contained the greatest number of observations in all the latitude bands. Second, it was found that

no matter what stationary class the storm was in at the present, it was most frequently in

stationarity class 5 at later positions. This implied that any acceleration or lack of any movement

was short lived. "Const juently, for six hour data a good guess of future stationary class of any

hurricane would be lat tude-velc.ity, longitude-velocity stationary (class 5)." (4:98)

2.5.2 Model Identification Curry's next step was to identify the appropriate order for

the autoregressive process. He determined that it was necessary to use the latitude and longitude

velocities to make the time series stationary. By using the lag zero latitude and longitide "

velocity columns as dependent variables and the lags one through five latitude and longitude

velocity columns as independent variables, he used a least sqjuares regression procedure in SPSS

to estimate the AR coefficients. This was used, instead of using a time series AR estimation

package, because of the segmenting of the hurricane tracks.

Using the least squares regression procedure to estimate the parameters, he found -

significant (significantly different from zero) coefficients at lags 1, 4, and 5. He felt the

significant lag 4 coefficient might imply "that the process could be autoregressive with a 'cyclic'

component at lag 4, representing a 24 hour lag. This component could physically reflect the

diurnal effect of the sun (the slowing of the storm at night)." (4:39) He then regressed only

using lags i, 4 and 5, and found that the lag 5 coefficient was "weak, so it was dropped from

the model.
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This led to the general model with velocity coefficients evaluated at lags I and 4" (4:39),

as follows:

LA-A:/.t-I C 4,m(L•-_L4-•_)+4C•.2(L4_/,-4 _LA9.-
+ *12.,(LO,_I-LOt_2) 4,(LOS...-Lot-) (24)
+c,

LOto-IO, =ý *214(LAt-1 -LA,-2) +4%1,2(LA,- 4 ILA,_,)
+ 4ýA,(LOt-_ 1-. +'22,2(Lt40-LOt_) (25)
+ C2

where r and C, are constants and the O's are the model parameters. Lagged terms past the

sixth period were not considered due to the short tracks of individual hurricanes.

2.5.3 Parameter Estimation After deciding what order the general autoregressive

model would have, the next step was to estimate its parameters. A separate forecast model was

estimated for both latitude and longitude in each latitude band, making seven sets of latitude and "

longitude models. Curry estimated the parameters for each latitude band using least-squares

regression, treating the lag-zero latitude and longitude velocities as the dependent variables and

the lag-one and lag-four latitude and longitude velocities as the independent variables. He used

SPSS regression procedures to calculate the parameter estimates (4:113-114).

2.5.4 Forecasting To predict the movement of hurricanes, Curry made six-hour

forecasts of the last position report using the estimated latitude band models. The latitude of the

last position of the storm dictated which latitude band model to use for the forecast. Once a six-

hour forecast was made, it was used as the most current position report to make the next

forecast. This was repeated until a 72-hour forecast was obtained. He furnished both point and

interval forecasts for the hurricane's position.
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2.5.5 Forecast Errors Curry's measured forecast error in terms of the great circle

distance (in nautical miles) between the actual (LA,LO) and the forecasted (LAf,LOf) position

of the eye of the hurricane. The great circle distance (GCD) is the standard measurement used

in hurricane forecasting and is calculated by:

GCD = 60 awxc6[sin(/LA, )sin(L. )+ws(.LA. )cos( LA )cos(/LO-L/o)] (26)

where.all angles are in degrees. The statistics used for his error comparisons were the sample

mean (MEAN) and the sample standard deviation (STD) of the forecast errors; computed via:

SGCD, (27)
MFAN - _- _

= (GCD,) 2-n(MFAN) 2  (28)

where n is the number of forecasted positions. MEAN gives an estimate of the expected forecast

error, and the STD gives a measure for the dispersion of all values around the mean.

2.5.6 Model Validation Curry's final step was to validate his model. Curry had

reservations about estimating error by forecasting the same storms that were used in estimating

the model coefficients, so he deleted storms (one at a time) from the data base, recomputed the

model coefficients, and he used these models to forecast the "deleted" storms. He concluded

"that the jarge number of observations in each region tended to diminish the contribution of

individual storms." (4:139) He decided that using the model building data set to validate his

model was appropriate.
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2.6 Research Limitations

This research closely follows Curry's methodologies except in the following areas:

1. This research is focused on the modification of Curry's model to improve its ability

to forecast all hurricanes, including storms which do not meet his hurricane velocity-stationarity

classification. Thus, Curry's procedures for identifying velocity-stationary storms are not used.

2. This research will only concentrate on developing point forecasts of a hurricane's

position. The interval forecasting procedures that Curry uses are not.

3. The same measurements for analyzing forecast error that Curry used will be used in

this research with the addition of mean squared prediction error (MSPR), calculated by:

•GCD? (29)
MSPR =-i

n

MSPR is the statistic of choice since it shows the effects of many large errors better than the

mean or standard deviation.
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This chapter provides a discussion of the methodology used to examine each of the

following areas in modifyring Curry's model:

*Data Manipulation

*Model Building

"a Forecasting

"* Model Selection

3.1 Data Manipulation

The data files and the steps required to calculate the parameters for the time series

models are described in this section. The areas covered are:

13 Reduction of the Data

"o Relaxation of Hurricane Stationarity

"o Separation into the Latitude Bands -

3. 1.1 Data Reduction The storm data were provided via computer disk by Curry. The

data set contained position reports at 6 hour intervals for storms, which includes hurricanes,

tropical storms and subtropical storms, from the major basins worldwide dating from 1945

through 1989. The disk format had 28 characters per record, where each record was a 6 hour

position report of a particular storm. The information in each record contained the storm

identification number (ID), the date, the time, the latitude (LA), the longitude (LO) and the

maximum sustained wind speed (WS) of the storm at the position report (see Appendix 1).
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The initial data reduction step limited the scope of investigation to only the storms in the

North Atlantic. Then, any storm that did not reach tropical storm status, which means its

maximum sustained wind speeds did not exceed 45 knots, was *deleted because of their weak-

persistence." (4:134)

Based on the procedures that Curry used, the next step involved eliminating "position

reports following landfall on the continental United States (US)." (4:134) This was done since

the focus is to accurately predict hurricane landfall and the actual movement of a storm after

landfall is inconsequential. This involved a slight complication, in that, the aclial landfall of a

storm was not included in the data files used for this research. In addition, because the US

coastline is not a straight line or________________________

easily defined area and since 31NIS0W

hurricane landfall on the Florida 45Ns70W

peninsula can result in a second,

crucial landfall on the Gulf Coast,

an assumption was made in 31Ns1 O OWOW

determining when a storm made

landfall. This assumption 1ON,100W ION920W

involved drawing a *boundary Of Figure 3.1. Landfall Cutoff Boundaries

landfall" just inside the US

coastline (sa~e Figure 3.1). Any position reports that were past this boundary (inside the

con' uner~tal US) w.ere considered after landfall and eliminated. The FORTRAN code used to set

the bouireary is included in Appen~dix H.
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The final step involved establishing a set of test storms to be used in validating the

models. The choice of this test set was based on the fact that Curry only used data through 1983

in fitting his models; accordingly we fit our models to the same data and included all storms that

occurred after 1983 in the test data. There were 45 storms with over 1076 position reports in

this test set dating from 1984 through 1989. After removing the test set, 351 storm tracks

containing a total of 9508 position reports were left for estimating the parameters of the models.

3.1.2 Relaxation of Hurricane Stationarity It is important, in time series analysis,.

"to know whether or not the underlying stochastic (random) process that generated the series can

be assumed to be invariant with respect to time." (15:497) If the series can be assumed to be

invariant with respect to time, which means "the probability of a given fluctuation in the process

from its mean level is assumed to be the same at any point in time ... it is possible to model the

process via an equation with fixed cocfficients that can be estimated from past data." (15:497).

Thus parameter estimation for such a process takes much less effort than a nonstationary process.

To account for stationarity in the hurricane series, Curry breaks the nature of a hurricane into

nine stationarity classifications, as discussed in the previous chapter (see Table 2. 1).

Although these stationarity classifications are logical, there is some question as to their

relevance and also the practicality of determining the actual stationarity of a storm that is

currently headed for the coast. First, when only using the storms that are classified as velocity-

stationary in estimating model parameters, a lot of information is lost. The information

contained in the storms not used because they were not velocity-stationary is wasted; thus for a

current storm to be forecasted accurately, the storm must be velocity-stationary. This limits the

application and the accuracy of the model.
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This research will relax Curry's stationarity classes and use all the hurricane tracks to

estimate model parameters in the latitude bands. It still, however, must be decided whether or

not the time series of hurricane tracks are stationary or nonstationary. If the series are presumed

to be nonstationary, the estimation procedures are complicated since the coefficients would have

to be "time-varying" because the series is not "invariant with respect to time." Differencing

would then appear to be required. On the other hand, if the series were presumed to be

stationary, the overall structure of the model would be changed since differencing would no

longer be required. Accordingly, the differenced model that Curry developed may not be the

best available for forecasting. This suggests the following models with no differenced terms:

1I 4, = *1 ,L A•,_1 +* 1121 ,_2+... +• n.• 4,_,
+ (32,1L4,_ +*12,.L4 2+... 4L•c0. (2)

+ CI

LO, = 4,21,ImAt +4,21.2 At. 2 +0021.. A,_p
+ 0 22 ,1LWt-I +40=22 -2 / +"" +0224q *"q (33)

+ 023, *,-I +0=*,-2 +.2. +2,,*Wt-r
+C 2

WS, = '131.,1,_1 +4031,PA, 2 +...+1 3j ,pLA5 P
+ 3 2 W•,O, 4+032,2,.-2 ++ + ..32g,_-q (34)
+ 4133•)',1_"-I+033,.2*2+...+4033,.",-,

+ G

but these models were ruled out after estimating their parameters by least squares using SAS.

The models for all the latitude bands showed little explained error, with high Mean Squared
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Error (MSE) and very low RW statistics. This suggested that the series are indeed nonstationary,

and probably should be differenced.

Accordingly, differenced models were chosen over the non-differenced models to improve

explanatory capability. The differenced latitudes (LA,-LA,.) or longitudes (LO,-LO,.,) will be

referred to as latitude or longitude velocities henceforth.

3.1.3 Separation into Latitude Bands Based on Curry's analysis, it was believed that

the model parameters should be allowed to change as the storm moved. This involved a

threshold model as described in Section 2.3. Thus, the hurricane tracks were segmented by

latitude bands five degrees in width, 10-15N, 15-20N, 20-25N, 25-30N, 30-35N, 35-40N and

40-45N in degrees latitude. When a hurricane crossed into another latitude band, the parameters

for the new latitude band were used for the next forecast. Models were made for latitude and

longitude in each of these bands separately which allowed the parameters to change as the storm

moved. When the forecast latitude enters a new latitude band, the models associated with that

new latitude band is used.

As discussed in Chapter 2, the data, to which the models for each latitude band were fit,

included all position reports within that band plus the five position reports obtained before a

storm moves into that band. Accordingly, the data base used in this research was arranged in

rows wherein each row contained the present position report of a storm (its latitude, longitude

and wind speed), and the five most recent values of the latitude velocities, longitude velocities

and wind speeds. This allowed for many more observations in each latitude band than Curry's

procedure allowed.
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3.2 Model Building

The parameters for each model were estimated using the SAS regression procedure

(PROC REG) applied to the set of 351 storms occurring in the period from 1945-1983. This

section describes the methods used to identify, specify and estimate the parameters of the

multiple models for this research. The identification and specification of the variations of

forecasting models will be discussed for position models and wind speed models.

3.2.1 Position Models The position models forecast the latitude and longitude

coordinates of the eye of a hurricane. Each model has a set of latitude and longitude equations

for each of the seven latitude Lands (see section 3.1.3). The latitude band models have the

general form of an fifth-order autoregressive (AR(5)) model applied to the latitude and longitude .

velocities, as follows:

U t-A,- t_j 4jjl(L.4t~j -L~,_2) +...+4 + 1,# At~-, -LA .6)

,2 ,1(L,_- -Lot-) +.. +41,,(Lo,_ 9-,- (35)

L o ,- L o , _, : 4 )2 ,,,(L 4 , _,- L A , .2) + ...÷4 ,2, .• z 4 t_, -L 4 , _6
+ 4023,A'-1-LO5-2) +'" +s-S LOt-s-LOf-) (36)
+ -LO, 1,_,... + .4.ws,5

+c2

where LA, represents the latitude at time t, LO, represents the longitude at time t, WS, represents

the maximum sustained wind speed at time t and C,, C, and C3 are constants. The significant

independent variables change according to the selection process used in each model. All the

models use six previous position reports (differenced once to obtain five velocities), unless the
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coefficient for a particular lag is zero. Eleven position models were evaluated in this research.

Their properties and estimation processes are described according to the following four sections:

1. Curry Models (2 Models)

2. Univariate Models (3 Models)

3. Bivariate Models (3 Models)

4. Trivariate Models (3 Models)

urry Models. These two forecast models have the general form shown in Equations (14)

and (15), which is the model that Curry specified in his dissertation in which latitude and

longitude are functions of each other at lags one and four. The first model is referred to as the

CURRY model; its parameters were estimated in his research using only his stationary class 5

storms (see Table B. 1).

The second model has the same dependent variables (lags I and 4) as Curry's model, but

the coefficients were reestimated using all the storms (1945-1983), not just the velocity-stationary

storms. This model is referred to as the CURRY NEW model. The latitude and longitude

velocity coefficients for this model are summarized in Table B.2.

Univariate Modelk. Univariate autoregressive models were formulated to see if the

dependence between latitude and longitude is significant. The model for each latitude band will

include latitude velocity at time t (LA,-LA,.1) predicted by past latitude velocities only, and

longitude velocity at time t (LO,-LO,,) predicted by past longitude velocities only. The

coefficients for all other dependent variables are zero.
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The univariate models thus have the form: ,'

14 -L-1 * (14,--,-I+A,) (L -2 -LA, 3) (37)

+... +42(L,_5 -Lo,_)+e•, (8

The estimation technique that is recommended by Curry to use ordinary least-square regression

was utilized, with past values of latitude (longitude) velocity as prediztors for the current latitude

(longitude) velocity. Piudyck and Rubinfeld support this by stating, "if the number of terms in

the distributed lag is very small, the equation can be estimated using ordinary least-squares

regression." (15:232) They go on to say that using lagged variables as independent variables in

ordinary least-squares is uncomplicated, but it might lead to imprecise parameter estimates

because of the presence of multicollinearity and also because a lengthy lag structure could use

up a large number of degrees of freedom (15:232).

Multicollinearity arises when the lagged variables are highly autocorrelated. In time

series studies, this is almost certain to occur to some degree since observations from time periods

close together are presumed to be correlated. According to Makridakis, both the loss of degrees

of freedom and the problem of multicollinearity can be resolved by eliminating all but one of the

highly correlated variables from the model (8:616). To account for the possible loss of degrees

of freedom, Curry limited the number of lags of latitude and longitude velocity he used in his

model. Since, Curry felt that the effects of a storm's motion more than 36 hours prior was

negligible, he used no more than five velocity lags. Since we agree with this assessment, the

lag-5 velocity will be the largest used in the models for this research. Note, for example, that
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the lag-5 latitude velocity is LA,.5-LA,6, where LA,' is the latitude observed six time periods in

the past, or 36 hours, prior to time t.

In this research, to further guard against the effects of multicollinearity, the STEPWISE

and BACKWARD options in SAS regression procedure were used during parameter estimation.

These options were used hypothesizing that they would aid in determining the actual order of the

model by eliminating any lagged variables which would not change the explanatory power of the

model by a significant amount. The STrhP WISE and BACKWARD parameter selection options

in SAS determine the variables that contribute the most by their influence on the RW (see Equation

5); only the variables that significantly affect RW are left in the model. The BACKWARD option

selects the optimal variables for the model by fitting the entire model and then "one by one

deleting variables until all the variables remaining in the model produce F statistics significant

at the 0.10 level. At each step, the variable showing the least contribution to the model is

deleted." (18:818) The STEPWISE option selects the optimal set of variables by bringing in the

variables one at a time, and at each step checks the F statistic fer significance at the 0.15 level

with the variables included, then removes any variables that are not significant (18:818).

Three univariate models were formulated: (1) UNI FULL - a full univiriate model which

has all the parameters for the five lag velocities included in the model (see Table B.3), (2) UNI

STEP - a stepwise univariate model with only the parameters of the significant velocities chosen

by the SAS STEPWISE option (see Table B.4), and (3) UNI BACK - a backward univariate

model with only the parameters chosen by the SAS BACKWARD option (see Table B.5).
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Bivariate Models. Curry's basic models expressed the latitude velocity at time t

(LA,-LA,.) as a function of past latitude and longitude velocities; and the longitude velocity at

time t (LO,-LO,.,) as a function of past longitude and latitude velocities as well:

÷ $ i, i(L 4 i-O,_ - 2,_) ' ...+4,, s(W s,_ -d_ (39)
+ct

1.0 = L O ,_,+ 4,•,L A.( a _-L ,_•) .... +42 , 5, (1A _, L A ,.6) . .+ 1- +..+ _•- (40) .' .5

" C2

where the C1 and C2 'constants and the •s are estimated using least squares regression. Three

new bivariate models were formulated: (1) BI FULL - a full bivariate model (see Tables B.6 and

B.7), (2) BI STEP - a stepwise bivariate model (see Tables B.8 and B.9) and (3) BI BACK -

a backward bivariate model (see Tables B. 10 and B. 11).

Trivartate Models. These models incorporate maximum wind speed of past hurricane

position reports as another explanatory variable The models for this variation are:

L, -LA = -- uj,(LA:_ -LAt- 2) +...+$ 11 _5(LA,_ 5 LA,_d
+ *21 I(Wt-I-LO4-2)+..+$12(L0,5-L_) (41)
+ (4*1 1)t_ +

+c+ C,

Lo0,-Loo, = 21,,(LA,-,- ,-,2)+... +$2,,,(LA,- -LA,
+ * A7A(LOI-I-Lot-2)+ -"+4022.(LOt-- -6 (42) )
+ ',,. W to_+..+ý2 w, _ (42).

+ 2

where LA, represents the latitude at time t, LO, represents the longitude at time t, WS, represents
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the maximum sustained wind speed at time t and C, and C2 are constants. A forecast model for

the maximum sustained wind speed is described in the next section. A wind speed forecast is

needed since the position forecasts are dependent on the wind speed in these models, thus the

position forecasts will need a wind speed forecast in calculating future values. The parameters

were estimated using least-squares regression, as in the univariate and bivariate cases, with the

addition of the wind speed as an extra dependent vmriable. Three multivariate models were

formulated: (1) TRI FULL - a full order trivariate model (see Tables B.12 -nd B.13), (2) TRI

STEP a stepwise trivariate model (see Tables B. 14 and B. 15) and (3) TRI BACK - a backward

trivariate model (see Tables B. 16 and B. 17). The eleven position models are summarized in

Table 3.1.

3.2.2 Wind Speed Models The two incentives for formulating a model to forecast

maximum sustained wind speed (WS) are: (1) a WS forecast is necessary in the trivariate position

forecast models which use WS as an explanatory variable of latitude and longitude, and (2) a

WS forecast will be beneficial to the hurricane forecaster as a prediction for storm intensity.

The WS was forecasted as a function of past wind speeds, latitude velocities and longitude

velocities. The general form of the WS model is:

+ L (43)

+ t3il W~t-I +...+10 33,5 WSt-s
+ C3

where LA, represents the latitude at time t, LO, represents the longitude at time t, WS, represents

the maximum sustained wind speed at time t and C3 is a constant.

39

,, \ , L-* - . . . -- "• . . "



The parameters were estimated using least-squares regression, as in the trivariate position

forecast models, with the WS at time t (WSJ) as the dependent variable. Three multivariate

models were formulated: (1) WS FULL - a full order trivariate model (see Table B.18), (2) WS

STEP a stepwise trivariate model and (3) WS BACK - a backward trivariate model. The WS

STEP and WS BACK models for all the latitude bands were equivalent, so the wind speed

forecast model WS BACK (see Table B: 19) will refer to the model selected by either option.

The wind speed and position models are summarized in Table 3.1.
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Table 3.1. Summary of Forecast Models.

Position Model I Dependent Variable Parameter Estimation Table # in
_ I Summary Procedure Appendix

1. CURRY Lags I & 4 (Bivariate) None. (Already Estimated) B. I

2. CURRY NEW Lags 1 & 4 (Bivariate) SAS PROC REG (no option) B.2

3. UNI FULL All lags 1 - 5 SAS PROC REG (no option) B.3
(Univariate) _--

4. UNI STEP Selected lags from I - 5 SAS PROC REG B.4
(Univariate) (STEPWISE option)

5. UNI BACK Selected lags from 1 - 5 SAS PROC REG B.5
(Univariate) (BACKWARD option)

6. BI FULL All lags 1 - 5 SAS PROC REG (no option) B.6, 7
(Bivariate) _________

7. BI STEP Selected lags from 1 - 5 SAS PROC REG B.8 9
(Bivariate) (STEPWISE option)

8. BI BACK Selected lags from I - 5 SAS PROC REG B.10, 11
(Bivariate) (BACKWARD option)

9.TRIFULL All lags 1 - 5 SAS PROC REG (no option) B.12, 13
(Trivariate)_ _ _ _..--__L

10. TRI STEP Selected lags from 1 - 5 SAS PROC REG B. 14, 15
(Trivariate) (STEPWISE option)

11. TRI BACK Selected lags from 1 - 5 SAS PROC REG B.16, 17
(Trivariate) (BACKWARD option)

Wind Speed Dependent Variable Parameter Estimation Table # in
Model Summary Procedure Appendix -

1. WS FULL All lags I - 5 SAS PROC REG (no option) B. 18 ..
(Trivariate)

2. WS BACK Selected lags from 1 - 5 SAS PROC REG B. 19
WS STEP (Trivariate) (BACKWARD and

STEPWISE options)

4/
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3.3 Forecasting

Once all the position and wind speed models had been estimated, the next step was to

compare their abilities in forecasting hurricanes. Two sets of storm data were used for the

comparisons, (1) the entire set of 351 storms used in model-building and (2) the test set of 45

storms. The FORTRAN code used is shown in Appendix H. The four main steps required in

forecasting the hurricane tracks in the two data sets are as follows:

tO Data Manipulation

"o Retrieving Model Coefficients

"o Calculating Forecasts

"a Calculating Forecast Errors

3.3.1 Data Manipulaton The two sets of data are the same as in Section 3.2. 1. The

data were put into matrices similar to those used for the model building data., where all the lags

w.ere stored on the same row as the current position report, except no differencing was used.

The forecasts were stored on the same row as the lags and present values.

3.3.2 Retrieving the Model Coefficients Due to the multiple models which are used

to forecast the three data sets of hurricane tracks, the model coefficients for each separate model

were read into the forecast routine as matrices. This allowed forecasts based on the different

models to be made easily. This is included in the FORTRAN code shown in Appendix H.

Each model had a separate set of latitude velocity, longitude velocity and wind speed

coefficients for each latitude band, so the forecasting equations could change as the storm moved.

Curry's latitude bands were again used (10- 15N, 15-20N, 20-25N, 25-30N, 30-35N, 35-40N and

40-45N in degrees latitude).
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A wind speed forecast was included with all the position forecasts, w~hich does not affect

the position forecasts except in the trivariate models. The wind speed forecast was necessary in

developing position forecasts using the trivariate models which used the wind speeds as a

dependent variable.

3.3.3 Calculatng Forecasts The forecasts were made using the basic models shown

in Equations 41, 42, and 43 for latitude, longitude and maximum sustained wind speed,

respectively. The coefficients depend on the model being used to obtain the forecasts. If a

particular coefficient is not significant or not used in the model (example: if STEPWISE did not

select it for inclusion in the model), then the coefficient is set to zero. The method for

forecasting hurricane position is the identical to Curry's method, and is stated as follows:

The one step ahead forecast position (LA,, L01) is based on the use of the (six) previous
(six hour) position reports. To obtain the two step ahead forecast, (LA.,, LO) is treated
as the last observed position, and the one step ahead forecast (from time t) is computed.
Forecasts for lead times up to n steps ahead are computed in a similar manmer. (4:65)

This method is assumed to be appropriate for this application and is duplicated in obtaining the

maximum sustained wind speed forecasts. One drawback to this method is that any errors which

occur in the first step (6 hour) forecast are likely to carry through all the forecasts, and any

errors which occur in the second step forecast are likely to carry through subsequent forecasts.

However, since the model parameters are allowed to change when a hurricane crosses into a new

latitude band, this error would be hard to eradicate. Also, irregardless of whether the last

observed position is a actual or forecasted position, the appropriate forecast equations are

determined by the latitude band that the last observed position is in.

43



3.3.4 Calculating Forecast Errors Once the forecasts had been calculated and stored,

the forecast errors could be calculated. Forecast errors were computed for the 6-, 12-, 24-, 48-,

and 72-hour forecasts, as recommended by Curry. The primary measure is the great circle

distance (GCD), which is the distance between the actual (LA,LO) and the forecasted (LA1,LO,)

position of the eye of the hurricane in nautical miles (see Equation (26)). The statistics used for

the model comparisons were mean errors (MEAN), the standard deviations (STD) of the errors,

and the mean squared prediction error (MSPR), as given by Equations (27,) (28), and (29),

respectively. The forecast errors of the latitude coordinates, -longitude coordinates and maximum

sustained wind speeds were also calculated and evaluated using the same statistics.

3.4 Model Selection

The model which showed the most overall accuracy when used to forecast the two

hurricane data sets was selected as the best forecasting model. The model coefficients of this

selected model were then recalculated incorporating all the storms from the test set (45 storms)

and the model-building set (351 storms), which will be referred to as the FINAL model. The

error analysis for the FINAL model was based on forecast errors of the combined data set (396

storms) and its predictive abilities compared to the other models. The forecasting results are

summarized in the next chapter.
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IV. Forecasting Results

This chapter provides a discussion of the forecasting results in applying Curry's model

and the ten new models to the historical hurricane tracks. The areas discussed are

a Model Analysis

s Forecast Results

a Final Model

4.1 Model Analysis

The eleven different models examined in this research are summarized in Table 3. 1, and

their fitted parameter estimates are presented in Appendix B. This section describes how the

parameters of these models give- some information about hurricane movement. It is broken down

into two sections:

"a Order of the Models and Persistence

"a Dependence Between Variables

4. 1.1 Order of the Models and Persistence The lag-four coefficients produced by the

STEP V/ISE and BACKWARD options are seldom significant enough to he included in a model.

This contradicts ýCurry's decision to use the lag-four parameter to capture the "diurnal effect of

the sun (the slo ng down of the storm at night).* (4:99) The lag-one parameter was included

the most ofte, ~d telag-two parameter was the second most often included. This means that*

the future storm m vement is best captured by the most recent history of the storm, which Curry

refers to as persis nce. This is also true for wind speed, which is primarily predicted by its

most recent past wind speeds alone.
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In addition, when observing the significant coefficients in the latitude velocity models,

the past latitude velocities appear to be the best predictors. This makes sense since the latitude

velocity is expected to be driven more by its past latitude velocity than by its longitude velocity.

The longitude velocity is best predicted with past longitude velocities and the wind speed is best

predicted by past wind speeds. However, the coefficients show that, in the middle latitude bands

(20-25 and 25-30), the latitude and the longitude velocities show a great deal of interdependence.

,This can be seen by examining the coefficients that are significant in the TRI BACK model (see

Tables B. 16 and B. 17). This presumably corresponds to where the storms start to change

direction from primarily toward the west and north to toward the east and north.

4.1.2 Dependence Between Variables Examining the coefficients in the various

models, it seems that longitude is a better predictor for latitude as opposed to latitude as a

predictor for longitude, but only in the lower and middle latitude bands (10-15, 15-20, 20-25,

and 25-30). In the other latitude bands, neither latitude or longitude depends greatly on the

other. This contradicts Curry's conclusion. He states that "latitude seems to be a better predictor

of longitude as opposed to predicting via the reverse relationship.* (4:99)

In predicting wind speed, neither latitude or longitude show much significance in the

models (see Table B. 19), but when latitude velocity coefficients are significant, they usually

correspond to the lag-one or lag-two terms. On the other hand, when longitude velocity

parameters are significant, they usually correspond to lag-four or lag-five terms.
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4.2 Forecast Results

The procedures for forecasting (see Section 3.3) were used to develop the 6-, 12-, 24-,

48- and 72-hour forecasts on all eleven models. Wind speed forecasts were also examined, and

for simplicity, only the WS BACK model will be used to- forecast wind speed for the remainder

of this research. The WS BACK model was chosen since (1) it was identical to the WS STEP

model, (2) it performed about the same as the WS FULL model, and (3) there are fewer

parameters in the WS BACK model than in the WS FULL model. Since WS BACK models

wind speed as a function of previous wind speeds and previous latitude and longitude velocities,

it must be used in conjunction with a position model in order to obtain forecasts for times greater

than 6 hours ahead.

The great circle distance was the primary measure of accuracy, although the errors in

latitude and longitude were also examined. The great circle distances (GCD) were calculated

(see Equation 26) for every 6-, 12-, 24-, 48-, and 72-hour forecast for the storms'in the model-

building data set (351 storms) and the test data set (45 storms). The analysis on the GCD is

done separately in each data set. The statistics used to analyze GCD were the mean (MEAN),

the standard deviation (STD), and the mean squared prediction error (MSPR) (see Equations 27,

28, and 29). This section is broken down into two areas:

"a Model-Building Data (Validation)

"o Test Daut
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4.2.1 Model Building Data (Validation) Forecasts were made for each of the 351

storms in the model-building data set for validation purposes. The objective was twofold: (1)

to identify any incongruities in the models which could not be attributed to expected normal

errors and (2) to get a first look at the forecasting abilities of the models.

MEAN and STh. The MEAN and STD values for GCD (great circle distance), wind

speed error, latitude error, and longitude error of the 6-, 12-, 24-, 48-, and 72-hour forecasts

are summarized in Tables C. 1-C.5. In each case, WS BACK is used to forecast wind speeds in

conjunction with the specified position model. The TRI BACK model had the consistently lower

MEAN and STD in all the forecast periods. The CURRY NEW model also performed quite

well, which may indicate that Curry's determined order may be satisfactory.

MSPR. The MSPR values for GCD, wind speed error, latitude error, and longitude error

of the 6-, 12-, 24-, 48-, and 72-hour forecasts are summarized in Tables C.6-C. 10. The TRI

BACK model had the lowest MSPR in the all the forecast periods, which would mean that

forecasting on thi; set of hurricanes the TRI BACK model would be best. The CURRY model

had the highest MSPR in all of the forefast periods, which would be as expected since its

coefficients were estimated using only certain storms. The latitude and longitude MSPRs

concurred that the best model was the TRI BACK model.

4.2.2 Test Data Forecasts were also made on the test data set (45 storms during the

period 1984-1989) in order to find the model that had the best 24-, 48-, and 72-hour forecasts.

MEAN and SiD. The MEAN and STD values for GCD, wind speed error, latitude error,

and longitude error of the 6-, 12-, 24-, 48-, and 72-hour forecasts computed over the test set are

summarized in Tables D. I-D.6 using the WS BACK model. Once again, the TRI BACK model
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had the consistently lower MEAN and STD in all the forecast periods, especially in the 48-hour

forecasts. It is interesting to notice that in the 72-hour forecast the CURRY model has the

lowest MEAN GCD, uut it has the highest STD, which means it is the most variable forecast

model. In the 72-hour forecasts, the TRI BACK model has the next lowest MEAN and it has

the lowest STD

MSPR. The MSPR values for GCD, wind speed error, latitude error, and longitude error

of the 6, 12, 24, 48, and 72-hour forecasts for the test set are summarized in Tables D.6-D. 10

using the WS BACK model in conjunction with each position model to forecast wind speed. The

TRI BACK modcl had the lowest MSPR for the 48 and 72-hour forecasts, the BI FULL model

had the lowest MSPR for the 12 and 24-hour forecasts, and the CURRY NEW model had the

lowest MSPR for the 6-hcur forecasts. This would suggest that Curry's order and model

selection might be appropriate, but the longer forecasts could be improved by using the TRI

BACK model. The CURRY model still had the weakest performance of all the models for each

of the forecasts.

The latitude and longitude MSPRs concurred with the best model being TRI BACK. In

addition, these MSPRs show that the univariate midels, UNI FULL and UNI BACK, predicted

the latitude coordinates well. This suggests that the longitude is not a good predictor of latitude,

since in the univariate models no dependence between latitude and longitude was accounted for.

This confirms Curry's observations that longitude is a good predictor of latitude (4:99). The

summary statistics from the test data set forecasts confirm that the TRI BACK model would be

the best model (from this set of eleven models) to predict any hurricane.
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Figure 4.1. The Plot of Four Hurricanes Which Did Not Exhibit the Typical Hurricane Path

Histograms. The histograms for all the forecast periods for both the test set and model-

building set are shown in Appendix F. The GCD errors appear to be Normal (GCD is an

absolute error measurement, so a Normal distribution associated with it will be truncated), but

the existence of a few very large GCDs would suggest that some of the storms did not behave

like typical hurricanes. After examining the tracks of four of the storms that produced these

outliers, it is apparent that these tracks do not exhibit the typical hurricane path (see Figure 4.1).

Since the object of this research was to modify Curry's model to best forecast all the storms,

these storms were left in both the model building and testing phases.

Latitude Band Summary. The forecast errors in the separate latitude bands show greater

errors in forecasting occur as the storms move north (see Appendix E).

50

/ I.



4.3 Final Model

The model comparison analysis suggested that the TRI BACK model was the best model

since it displayed the best overall forecasting results of the eleven models. The next step was

to recalculate the TRI BACK model parameters using the two sets of data combined, which

included 396 storms with over 10500 observations. The new model will be referred to as the

FINAL model. This section focuses on model identification and forecasting.

4.3.1 Model IdentzjIcatxio The parameters for forecasting latitude, longitude and

maximum sustained wind speed as functions of each other were estimated using SAS PROC REG

with the BACKWARD option. The estimated models for each latitude band are listed in

Appendix A, and the coefficients for latitude ve.locities, longitude velocities and maximum

sustained wind speed are summarized in Tables B.20, B.21 and B.22.

There seems to be- a strong interdependence between the three variables, since in many

of the models there exists significant parameters for all three of the variables. In general,

latitude velocity depends mostly on past latitude velocities; but many longitude velocities and a

few vast wind speeds are also included. Longitude velocities depend heavily on past longitude

-velocities. Wind speed is primarily a function of past wind speeds, as expected. The model W1

values for all the models range from 0.647 to 0.972, with the larger values from wind speed

models. Since the higher R12 values are from the models for predicting wind speed, we would

expect the wind speed to be predicted most accurately with these models. The lower W1 values

for latitude and longitude velocities appeared in the 20-25N degree band, and, more generally,

the lower values were in the most southern bands (10-15N, 15-20N and 20-25N degrees).
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4.3.2 Fo7e ca sting The forecasts for the FINAL model were made with the same

procedures in Sections 3.3 and 4.2, except that the test set was included in the model-building

set. The primary forecast evaluation tools for this model are the model-building data set (396

storms) and an example hurricane track. Hurricane Hugo (1989) was chosen, since its the

position reports were eas ily available and. because it caused significant damage to a highly

populated area.

Model-Building Set (396 storms). The entire set of data (396 storms) was forecasted

using the FINAL model, the CURRY model, and the TRI BACK model. These three models

were used to compare the -forecasting abilities between the CURRY model and tke FINAL

model, and to also to compare the TRI BACK model with the FINAL model to see if using the

entire data set to estimate the parameters effects the forecasting ability.

Summary Statistics. The primary measure GCD is used (see saction 4.2. 1) to compare

these models using this set of hurricane tracks; the summary tables are in Appendix G. Both

the WS BACK and the FINAL wind speed models were used separately to allow comparison

between models without having to determine how much of the variance in the forecast errors is

due to the wind speed model errirs, since our main focus is to compare position forecast ability.

The summary tables show that both wind speed models; forecasted wind speed similarly with

virtually no affect on the position forecasts.

The overall summary statistics for the GCD MSPR (Tables GA and G.3) show that the

TRI BACK and FINAL models have. equivalent position forecasting ability, and both are better

than the CURRY model in all forecast periods. The GCD MEAN and STD results (Tables G.2

and GA4) also show that the TRI BACK and FINAL models have lower mean errors and lower
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standard deviations than the CURRY model. The 72-how forecast will be tested using tests of

hypotheses on the means and variances of two Normal Astributions, to see if there is significant

differences between the CURRY model and the FINAL model. The 72-hour forecast is used due

to its importance in hurricane forecasting. Normality will be assumed since the number of

observations is high (minimum of 377 observations).

Test of the Means. A hypothesis test of the two model means (17:289-290) GCD at the

72-hour forecast shows that there is a sigmificant difference hi the means at the 0.0005 level:

H,: OcRR = MU

* ~XCURUYXFINA
VS2U".4CR 2;N nFU

- 28.5
.5.93

= 4.803

tcmrf = t•0,. = 3.291

where we reject H., since t, > t,. We can strongly conclude that the 72 hour GCD mean for

the FINAL model is less than the CURRY model (17:288).
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Test of the Variances. The hypothesis test on the 72-hour forecast GCD variances

(17:295-296) of the two models also shows a significant difference:

o. 2 2
H,: OCUI •= FIN4L

HI 2 2 ."..

HI: CICU,,l > aIrU

2

_ (283.6)2

(240.2)2

=1.394

FcMpi = F•%... = 1.00

where we reject H., since F, > F,,,. We can strongly conclude that the 72-hour forecast error

(GCD) variance for the FINAL model is less than the CURRY model (17:295). Based on this

analysis, we can conclude that the hurricane forecast ability for the FINAL model is better than

Curry's final model over the entire hurricane data set.

Hurricane Hugo. The FINAL, TRI BACK and CURRY models were used to forecast

the 1989 hurricane Hugo. Hugo devastated the North Carolina coastline and caused damages that

exceeded millions of dollars. Table 4.1 shows the overall -forecasting statistics of the three

models. The TRI BACK and FINAL models showed similar forecasting ability, which is

expected since they are both similar models. The CURRY model did not perform as well.

Figures 4.2 and 4.3 show the actual track of hurricane Hugo and the 72-hour forecast tracks that

were made 72 hours before it actually hit the coastline using the CURRY model and the FINAL

54

I-..



/

Table 4.1. The Forecast Error Summary Statistics for Hurricane Hugo (1989).

FORECAST # MEAN(NM) STD WS MEAN WS STD

CURRY
6HR 42. 22.3969 38.2536 -0.5113 8.1422

12HR 42. 59.7075 86.5630 -1.2497 14.9071
24HR 41. 146.0242 204.0455 -2.3709 25.7854
48HR 41. 376.8226 400.4484 -4.0553 30.6029
72HR 40. 600.9904 519.5353 -1.9381 27.9269

FINAL
6HR 42. 20.2171 31.0682 -0.4479 8.1365

12HR 41. 47.4721 51.0166 -0.8859 14.9887
24HR 40. 105.8161 119.8206 -1.7695 25.6510
48HR 39. 256.6896 203.2172 -3.8079 29.8377
72HR 36. 390.9282 267.6997 -5.6445 25.2889

TRI BACK
6HR 42. 20.8542 32.6635 -0.5113 8.1422

12HR 41. 46.8584 51.0597 -0.9575 15.0223
24HR 40. 104.6282 121.4189 -1.9029 25.6006
48HR 39. 250.1266 199.5878 -3.9065 29.7214
72HR 36. 383.6379 273.4965 -5.2186 25.5723

model, respectively. The hurricane symbol marks the end of the 72-hour forecast track in each

figure, while the track for hurricane Hugo continues through the Northeastern part of the United

States. Neither model made a very accurate 72-hour forecast of Hugo, both expecting Hugo to

still be well out at sea, although the CURRY model did have a smaller error (see Table 4.2).

Figures 4.4 and 4.5 show the actual track of hurricane Hugo and the 48-hour forecast

tracks that were made 24 hours before it actually hit the coastline using the CURRY model and

the Final model, respectively. The 48-hour forecasts were used to illustrate how the FINAL
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Table 4.2. The Landfall GCD Forecast Errors for Hugo.

72 HOURS FROM LADFALL 24 HOURS FROM LANDFALL-

FORECAST FINAL CURRY FINAL CURRY
PERIOD FORECAST FORECAST FORECAST FORECAST

6 HOUR 0.00 0.00 22.27 22.52

12 HOUR 55.67 19.14 70.35 101.30

24 HOUR 163.66 51.44 298.67 449.22

48 HOUR 422.16 230.05 LAND LAND __

72 HOUR 697.08 495.45 LAND LAND

model had a forecast track right through the actual landfall position of Hugo (Charleston, SC)

even though the actual extrapolated prediction for landfall would be closer to 48 hours rather

than 24 hours. The Curry model also predicted landfall to occur in 48 hours but the location of

landfall was far south of Charleston.

Hugo was a very fast moving storm with acceleration towards Charleston. The ability

to account for any accelerations of its movement are exactly what Curry's model cannot model

since it only used storms that were latitude and longitude stationary in velocity. The FINAL

model does seem to forecast these accelerations better, and give a more accurate forecast.
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Figure 4.2. CURRY 72-hour Forecast
Tracks of Hugo at 72 Hours from Landfall.1,

A

Figure 4.3. FINAL 72-hour Forecast
Tracks of Hugo at 72 Hours From Landfall.
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Figure 4.4. CURRY Landfall Prediction of
Hugo 24 Hours Away from Actual Landfall.

* Figure 4.5. FINAL Landfall Prediction of

Hugo 24 Hours Away from Actual Landfall.

58



V. Conclusions and Recommendations

The results of Chapter IV are summarized in this chapter, as they relate to forecasting

hurricane movement. Some recommended topics for future research are also discussed.

5.1 Hurricane Modeling Conclusions

The objectives of this research were: (1) to modify Curry's threshold autoregressive time

series model to improve its ability to forecast all types of hurricanes, (2) to forecast the

maximum wind speed sustained for a hurricane, and (3) to include past maximum wind speeds

as an explanatory variable to aid in forecasting hurricanes.

The first problem encountered in this research was eliminating position reports following

landfall (see section 3.1.1), since the forecast over land is not crucial. Creating a boundary for

landfall solved this problem and gave the flexibility to include hurricane tracks that moved

through the Florida peninsula towards the Gulf Coast communities.

The next concern involved the stationarity classifications that Curry used (see Section

3.1.2). It was concluded that the stationarity classifications would create complications when

forecasting a storm in real-time. There is no way of telling what stationarity class the storm is

in until many position reports are collected, and a storm may change classes several times m its

duration. Accordingly, the stationarity classification was dropped from the model to estimate

new parameters using all the storms.

One of the major contributions of this research was the construction of the data files (•ee

Section 3.1.3), which allowed for many more observations to be included in estimating le

parameters. This allowed for stronger conclusions to be made about forecasting results and
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parameter estimation. One of Curry's issues involved the limited number of useful observations

he had !o work with. It is felt that if Curry used this new strategy for constructing the data files,

he might meet all of his original objectives.

The eleven models used in this research involved slight modifications tc Curry's model.

After estimating the parameters, each model was used to forecast the hurricanes in a test set so

the forecast abilities of the different models could be compared. The model that most accurately

forecasted the 396 storms in the data base was a trivariate threshold autoregressive time series

model (see Appendix A) referred to as the FINAL model. This forecast model predicts latitude

velocity, longitude velocity and wind speed as functions of each other for forecasts up to 72

hours. It was estimated using SAS REG with the BACKWARD option. By determining the

order using BACKWARD, some of the information that Curry lost by leaving out all lag 2, lag

3, and lag 5 explanatory variables was gained, but with less risk of overspecifying.

The FINAL nodel had average 24-, 48-, and 72-hour forecast errors of 103, 243, and

376 nautical miles, Ihile Curry's model had forecast errors of 120, 269, and 405 nautical miles.

Accordingly, it is conJectured that the FINAL model would improve on Curry's average errors.

In addition, a model to forecast the maximum sustained wind speed had to be estimated

to use the wind speeds properly in the latitude and longitude forecast models. These maximum

sustained wind speed forecasts should be helpful to the hurricane forecaster. The wind speed

model used in this research gave mean errors and standard deviations of -0.1 and 15.4 miles per

hour (MPH) for the 24-hour forecast, 1.6 and 21.6 MPH for the 48-hour forecast, 3.4 and 24.5

MPH for the 72-hour forecasts. In other words, the model forecasts maximum sustained wind

speed with a mean error of within 4 MPH.
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5.2 Future Hurricane Modeling

This model demonstrates that improvements can be gained in predicting the movement

of hurricanes. This section describes some future research which might improve our forecasting

ability even more. The areas that future research might focus on include:

a Using the Autocorrelation Modei

a Increase Number of Latitude Bands

"a Modeling the Hurricane Outliers Separately

5.2.1 The Autocorrelation Model One of the problems encountered when formulating

the model for the hurricane data was the need to combine the cross-section (independent storms)

and time series data (individual position observations), see Section 2.4. Pooling data was

necessary since we wanted to examine the history of hurricane motion to find general patterns,

trends or persistence that hurricanes may share. Pindyck and Rubinfeld's autocorrelation model,

described in Section 2.4, may be a good means to accomplish pooling of the hurricane data

without losing any observations due to the independent storms.

5.2.2 Increasing the Number of Latitude Bands The threshold model used in this

research duplicated Curry's model (see Section 2.3), which was developed to allow the model

coefficients to change as the storm travelled through the Atlantic. One of the reasons that Curry

segmented the Atlantic into only seven latitude bands was his lack of sufficient data in each of

the bands once the lagged data was made "storm unique" (1:106). In this research, a different

technique for breaking the data into latitude bands (see Section 3.1.3) allowed many more

observations to be used for developing models in each latitude band. Accordingly, it may be

beneficial to segment the Atlantic into more regions, since the data is available. This would
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allow the model to better reflect any effects the location of a hurricane has on its motion. The

belief that the region of the ocean the storm is in has an impact on its motion is onc of the

hypothesis that drove Curry's research effort (4:105).

5.2.3 Modeling the Hurricane Outliers Separately One of the factors creating some

of the large forecast errors was the existence of certain storms which did not exhibit typical

hurricane tracks (see Figure 4. 1). These tracks could not be accurately forecasted since they did

not exhibit any of the underlying patterns, trends and persistence that are common in the majority

of the past hurricane tracks. In addition, the inclusion of these storms in the parameter

estimation phase might possibly weaken the ability of the model to accurately model the majority

of hurricane tracks which do possess common tracks. By estimating the model parameters

without these storms, the model's forecasts of normal hurricane tracks could be more accurate,

at the expense of its ability to forecast the unusual tracks.

One solution to this problem might be to model the normal hurricane tracks separately

from the abnormal tracks. Unfortunately, the forecaster would have a hard time telling which

model to use in the early stages of the hurricane, if ever. The key would be to find some

underlying correlations or factors in these abnormal tra cks which would allow the forecaster to

determine when their occurrence is most likely. Once this is determined, the forecaster could

decide which model to give more consideration.

In this research, the four storms from the test data, which gave 72-hour forecast errors

above 1000 nautical miles when forecasted using the TRI BACK model, were inspected (see

Figure 4.1). This examination revealed that all these abnormal storms materialized after

September 15th (late season storms). This miy suggest that the late season storms should be
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modeled separately from all other storms, which may give a better forecast for the early season

storms, thus reducing the overall forecast errors.

5.3 Overall Evaluation

The FINAL model, see Appendix A, shows more promise than Curry's model for

forecasting hurricanes because it shows a significant improvement in mean and variance in

forecast errors. An added feature of the FINAL model is that it would predict the maximum
sustained wind speed of the 72-hour forecast with mean error of less than 4 miles per hour. This

makes the FINAL model even more valuable to the hurricane forecaster, since one of the

emerging issues in the 19th Conference on Hurricanes and Tropical Meteorology (May 1991),

was the ability to predict the intensity of a storm.

Before presenting this model to the NHC, the reconimendations should be implemented.

These enhancements should significantly improve the models ability to forecast hurricane

movement. In the mean time, this model could be programmed for a personal computer to use

as a supplementary tool for the hurricane forecaster.

63



I.\

/r

Appendix A. The FINAL Model

These are the recommended latitude band models for forecasting the positions and.

maximum wind speeds of tropical storms and hurricanes. The models were estimated using the

past velocities of latitude and longitude, and the past wind speeds of 396 storms from 1945-1989.

Hurricane official reports are made at 6 hour intervals, at OOOZ, 0600Z, 1200Z and 1800Z.

In the models, the subscripts refer to the time period of the variable, where a hurricanes

present report is referred to as t- 1, and the previous report is referred as t-2, two reports previous

is t-3, and so on. These models can be used to find the one-step ahead (t) position and wind

speed forecasts, then the two-step ahead (t+ 1) forecast can made using the (t) forecast as the

(t-W) report, the present report (t-0) as the (t-2) report, and so on.

Latitude Band: 10-15 degrees N

. -,=.A,_, +0.766(LA,, -LA,_2)+0.107(LA,_2 -/IA,_)+.0.088(L4t -4-L4,_s)-0..143(L4,,_s-L4,_6)

-0.105(LO,_, -LO,-2) +0.054(LO-,-.2 -LO,-) +0.038(L0.05 -L.0,6)
+0.oo2(s,_,)-o.oo2(M,_-)
+0.065

LO,=LO,_,.6(L,,- ,_,)-.l79 ,,,-4 ,_,) (,-s- ,-6
+.s L0o( 1 ,_,-2, +o.116(L,_t- ,_,) \
-0.001("t_1)
+0.085

KfS= 1.457(LA,_I -/A,_2•
+0.622(L.O_4-LO_5)
+ 1.516(Kt,_)-0.530( t,-)

+0.586
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Latitude Band: 15-20 degrees N

LA, =LA,1, +.954(LA,_1 -L4,2)-0.O3(IA,-2 -LA,-~)
-0.034(LOQ2 -LO,) +0.038(1.0 -Of,

+0.044

Lot f-i +.855(Wo,1 -W,,-) +0.075(W, -5 -1.046)
-0.005(WM) " 005(Wt-)
+0.049

"Wý=1.449(Wt-)-0.425(W,-2-0.056wWS.4
+2.116

Latitude Band: 20-25 degrees N

IA,=LA,,l +0.880(LA,-1 -L 2)+0.075(IA,-4 1 .A-)0.088(LA1 -5.. LA,..d
-0.206(L0,-L o1 . 2) +0.078(LO.. 2 -L4,-)
+0.065(1.-3 -L0,,~)+0.038(1.4-5 -W1A)d
+0.091

LO,=WO- -0.383(lALA,-,-Lt 2) 0'25:A-2 L4,.3)+0.634(I.4- -L4t-) +0.093(Lo-3L44 )ý
+0.119(L4,3 -L0,) +0.065(WO, -L4,-)
+0.058

*Tt= 1.529(LAt- -LAt-2)
+ L432(M$1 ) -0.464("t-2)
+1.817

65



Latitude Band: 25-30 degrees N

LA,=LA,-1 + 1.036(IA,-i -LA,_) -0.157(LA,_2-LA,_)
+0.068(LA,-4-LA,-) -0.079(LA,.- -LA, 6 )

+O.002(Mj) 0.02(W:_)
+0.066

WO,=LO,- -0.382(LA,1-I-A,_)+0.251(LA,_ 2-LA,_3)
+0.634(LO, -W,.2,) +0.093(LQ,2-L0,-)

+0.058

+2.1 16

Latitude' Band: 30-35 degrees N

IA,=IA,- 1 +1 .081(LA,1-,lA,2) -0.253(LA,-2-LA,.-)

+0.019

S -1 t_-.03LO$2L~F.td1J

+ 1.102(LO,1 -Lt4~) -0.073(L4..2S-LO,..)

-0.039

"Wt,=0.422(LO_5 -L.0, A)

+ 1.334(MS,1) -0.2:4WM,-.2)-0. 156(WS,..
+2.825
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Latitude Band: 35-40 degrees N

IA,=LA4-1 + 1.132(LA,- -LA,-) -0.193(LA 12-LA,-)
-0.057(LOt-I -LOt-) +0. 129(LOt-4 -W~t-)
-0.066L0,.fOgf..A-)
+0.079

LO,=LOt-l -0. 129(143- -LA,_)

+0.005(Kgt,2)-0.005(WSt-)
-0.103

+2.380

Latitude Band: 40-45 degrees N

+0.O07(*W-) -0.005(fWt-4)
+0.(r-9

LV, =LO,-, -0. 182(LA,- -IA,-2)-0.208(fA,- 2-LA,-3)
+1I.062(WD, 1 -WO,2) -0.152(1.0, 2 WL,-)

+ -0.006(*W-, 1 +0.015(nt4) -0,013(M:-5)
-0.153

+4.300
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Appendix B. The Forecasting Models Coefficients

This Appendix summarizes the coefficients for the various models used in this study. The

headings and variables used are as follows (the subscripts refer to the te observation of a time

series; for example, a hurricanes present report is referred to as t-I, and the previous report is

referred as t-2, two reports previous is t-3, and so on):

Position Variables

LATD - The latitude velocity forecast LA, - LA,.,

LOND - The longitude velocity forecast LO, - LO,."

tIL
LATD LAG 1 (to 5) - The lag I (to 5) latitude velocity LA,., - L012 (LAO,, - LAM)

LOND LAG 1 (to 5) - The lag 1 (to 5) latitude velocity LO,., - LO•, (IL),, - LOW) J,..

Wind Speed Variaules

WS - The maximum sustained wind speed forecast WS,
.1f; .r

WS LAG I (to 5) - The lag I (to 5) maximum sustained wind speed WS.%, (WSs,) *1

L, -
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Table B.1. Curry's Bivariate Model.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45
VAR VAR

LATD INTER- .048 .053 .054 .071 .072 .087 -. 086
CEPT

LATD .696 .766 .849 .777 .746 .735 .7423
LAG 1

LATD .101 -. 106 .013 .016 -. 015 -. 094 .013
LAG 4

LOND -. 010 -. 064 -. 101 -. 049 -. 075 -. 067
LAG 1 ....

LOND .014 .073 .083 -. 011 .023 -. 003
LAG 4

LOND INTER- .127 .139 .067 .052 -. 044 -. 109 -. 205
CEPT _ ___

LATD .233 .012 .026 .103 .050 .0300 -. 145
LAG 1
LATD -. 075 -. 050 -. 052 -. 198 -. 030 -. 005 .125
LAG 4

LOND .607 .775 .779 .837 .841 .881 .831
LAG 1

LOND .251 .088 .121 .032 .068 .006 -. 042
LAG 4
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Table B.2. Bivariate Coefficients Using Curry's Determined Order.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45 ..
VAR VAR _....

LOND INTER- .075 .039 .095 .076 .062 .075 .147
CEPT

LATD .844 .918 .874 .923 .949 1.017 1.033
LAG 1

LATD -. 003 -. 020 .003 -. 045 -. 025 -. 088 -. 130
LAG 4

LOND -. 063 -. 035 -. 144 -. 091 -. 019 -. 046 -. 002
LAG 1

LOND .045 .042 .093 .082 .022 .043 .008
LAG 4

STAT R-SQR .681 .7340 .663 .7959 .814 .800 .760

MSE . 0 2 6  .033 .080 .064 .091 .121 .250

# OBS 578 996 1344 1529 1256 1014 5580

LOND INTER- .049 .062 .104 -. 012 -. 044 -. 106 -. 314
CEPT

LATD .119 -. 042 -. 247 .030 -. 062 -. 070 .0633
LAG 1

LATD -. 089 .032 .072 -. 100 -. 046 -. 074 -. 122
LAG 4 //
LOND .874 .872 .689 1.014 1.004 1.048 1.028
LAG 1

LOND .070 .056 .173 -. 087 -. 102 -. 138 -. 191
LAG 4

STAT R-SQR .834 .809 .597 .835 .861 .847 .782

MSE .046 .075 .230 .114 .135 .209 .518

# OBS 578 996 1344 1529 1256 1014 580
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Table B.3. LATD & LOND Univariate Coefficients (All Included).

I_ LATITUDE BANDS

DEP INDEP 10-.5 15-20 20-25 25-30 30-35 35-40 40-45
VAR VAR

LATD INTER- .053 .046 .074 .085 .065. .076 .171
CEPT _ I

LATD .778 .976 .704 1.072 1.079 1.163 1.052
LAG 1

LATD .105 -. 097 .129 -. 201 -. 238 -. 191 -. 005
LAG 2

LATD -. 011 .018 .076 -. 004 .118 .012 -. 099
LAG 3 1

LATD .113 -. 023 .037 .101 .030 -. 055 .089
LAG 4

LATD -. 171 .035 -. 067 -. 088 -. 068 .022 -. 171
LAG 5

STAT R-SQR .685 .733 .647 .795 .819 .801 .764

SMSE .026 .033 .084 .064 .088 .120 .246

# OBS 578 996 1344 1529 1256 1014 580

LOND INTER- .056 .051 .003 -. 034 -. 092 -. 177 -. 392
CEPT I

LOND .867 .887 .488 1.068 1.113 1.269 1.057
LAG 1 _

LOND -. 036 -. 081 .201 -. 013 -. 100 -. 312 -. 162
LAG 2

\ LOND .118 .107 .121 -. 149 -. 065 .020 .160
LAG 3

LOND .029 -. 057 .052 .092 .069 .071 -. 040
LAG 4 _ _ _ _ _ __ _ _

LOND -. 031 .076 .0231 -. 082 -. 124 -. 137 -. 213
LAG 5

ST T R-SQR .833 .811 .608 .835 .861 .851 .787

MSE .046 .074 .224 .114 .135 .204 .506

#OBS 578 996 1344 1529 1256 1014 580
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Table B.4. LATD & LOND Univariate Coefficients from Stepwise
Procedure.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45
VAR VAR

LATD INTER- .053 .049 .075 .082 .065 .073 .169
CEPT

LATD .778 .975 .705 1.068 1.080 1.168 1.024
LAG 1

LATD .010 -. 080 .130 -. 182 -. 241 -. 211
LAG 2

LATD .092 .135
LAG 3

LATD .107
LAG 4

LATD -. 171 -. 051 -. 053 -. 154
LAG 5

STAT R-SQR .685 .733 .647 .793 .819 .801 .762

MSE .026 .033 .084 .065 .088 .120 .246

I OBS 578 996 1344 1529 1256 1014 580

LOND INTER- .053 .052 .007 -. 034 -. 092 -. 177 -. 396
CEPT

LOND .847 .864 .489 1.062 1.113 1.267 1.004
LAG 1

LOND .204 -. 122 -. 300
LAG 2 /

LOND .102 .125 -. 156
LAG 3 _ ___

LOND .064 .092 .083
LAG 4

LOND -171 -. 051 -. 087 -. 053 -. 154
LAG 5

STAT R-SQR .833 .810 .607 .835 .861 .851 .785

MSE .046 .074 .224 .114 .135 .203 .509

I OBS 578 996 1344 1529 1256 1014 580
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Table B.5. LATD & LOND Univariate Coefficients from BACKWARD
Procedure.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45
VAR VAR

LATD INTER- .053 .049 .075 .085 .065 .073 .169
CEPT

LATD .778 .975 .705 1.072 1.080 1.168 1.024
LAG 1

LATD .010 -. 080 .130 -. 204 -. 241 -. 211
LAG 2

LTD .092 .135
LAG 3

LATD .107 .098
LAG 4

LATD -. 171 -. 051 -. 087 -. 053 -. 154
LAG 5

STAT R-SQR .685 .733 .647 .795 .819 .801 .762

MSE .026 .033 .084 .064 .088 .120 .246

#_OBS 578 996 1344 1529 1256 1014 580

LOND INTER- .053 .050 .007 -. 034 -. 092 -. 177 -. 393
CEPT I

LOND .847 .882 .489 1.062 1.113 1.267 1.055
LAG 1

LOND -. 073 .204 -. 122 -. 300 -. 157
LAG 2

LOND .102 .074 .125 -. 156 .138
LAG 3

LOND .064 .092 .083
LAG 4

LOND .050 -. 082 -. 098 -. 138 -. 235
LAG 5 1

STAT R-SQR .833 .811 .607 .835 .861 .851 .787

HSE .046 .074 .224 .114 .135 .203 .505

# OBS 578 996 1344 1529 1256 1014 580
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Table B.6. LATD Bivariate Coefficients (All Included).

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45
VAR VAR ___ __

LATD INTER- .068 .035 .078 .084 .068 .072 .180
CEPT

LATD .782 .971 .897 1.048 1.066 1.137 1.046
LAG I

LATD .105 -. 088 -. 063 -. 176 -. 231 -. 176 .013
LAG 2

LATD -. 011 .017 .065 .004 .115 .012 -. 125
LAG 3
LATD .123 -. 030 .062 .081 .028 -. 052 .103

LATD -. 178 .036 -. 078 -. 087 -. 070 .013 -. 175

LAG 5

LOND -. 110 -. 016 -. 215 -. 131 -. 057 -. 062 -. 0301
LAG 1 _

LOND .058 -. 048 .105 .038 .043 .026 .089
LAG 2_____ __

LOND -. 004 .043 .039 .0530 .022 .000 -. 113
LAG 3

LOND .009 .006 .008 .086 -. 022 .062 .051

LOND .033 .025 .030 -. 064 .018 -. 030 .010
LAG 5

STAT R-SQR .693 .737 .676 .084 .068 .072 .180

MSE .026 .032 .078 .061 .088 .119 .246

I OBS 578 996 1344 1529 1256 1014 580
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Table B.7. LOND Bivariate Coefficients (All Included).

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45
VAR VAR

LOND INTER- .048 .058 .053 -. 010 -. 044 -. 113 -. 356
CEPT _

LATD .152 .023 -. 403 .029 .004 -. 006 .200
LAG 1

LATD -. 056 -. 076 .231 -. 011 -. 094 -. 051 -. 283
LAG 2

LATD .038 -. 052 .041 .033 .002 -. 050 .176
LAG 3

LATD -. 166 .130 -. 000 -. 152 .013 -. 011 -. 117
LAG 4 1

LATD .071 -. 044 .011 .040 -. 026 -. 003 -. 020
LAG 5

LOND .861 .890 .618 1.059 1.091 1.236 1.091
LAG 1

LOND -. 032 -. 081 .092 -. 005 -. 108 -. 294 -. 206
LAG 2

LOND .124 .109 .102 -. 015 -. 064 .006 .166
LAG 3

LOND .032 -. 062 .061 -. 097 .070 .063 -. 024
LAG 4 .

LOND -. 040 .076 .031 -. 087 -. 093 -. 106 -. 227
LAG 5 - -

STAT R-SQR .837 .812 .625 .838 .864 .855 .792

MSE .214 .074 .215 .112 .133 .200 .498

# OBS 578 996 1344 1529 1256 1014 580
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Table B.8. LATD Bivariate CoefficiEnts from Stepwise Procedure.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45
VAR VAR

LATD INTER- .068 .037 .078 .082 .065 .073 .169
CEPT

LATD .783 .971 .888 1.046 1.080 1.168 1.024
LAG 1

LATD .099 -. 075 -. 179 -. 241 -. 211
LAG 2 /

LATD .135
LAG 3

LATD .116 .097
LAG 4

LATD -. 177 -. 097 -. 053 -. 154
LAG 5

LOND -. 109 -. 208 -. 113
LAG 1

LOND .058 -. 063 .077
LAG 2

LOND .046 .061 -. 100
LAG 3

LOND .036
LAG 4

LOND .037 .027
LAG 5

STAT R-SQR .693 .736 .674 .803 .819 .801 .762

MSE .025 .033 .078 .062 .088 .120 .246

# OBS 578 996 1344 1529 1256 1014 580
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Table B.9. LOND Bivariate Coefficients from Stepwise Procedure.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45
VAR VAR

LOND INTER- .043 .052 .061 -. 008 -. 048 -. 118 -. 373
CEPT

LATD .125 -. 406 .030 .206
LAG 1

LATD .274 -. 094 -. 108 -. 230
LAG 2

LATD
LAG 3 __

LATD -. 096 -. 096
LAG 4

LATD
LAG 5

LOND .839 .864 .623 1.056 1.092 1.241 1.089
LAG 1
LOND .077 -. 129 -. 296 -. 193
LAG 2

LOND .110 .124 -. 146 .138
LAG 3

LOND .075 .090 .072
LAG 4

LOND .067 -. 082 -. 067 -. 109 -. 233
LAG 5

STAT R-SQR .836 .810 .624 .838 .864 .855 .791

MSE .046 .074 .215 .112 .132 .199 .498

# OBS 578 996 1344 1529 1256 1014 580
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Table B.10. LATD Bivariate Coefficients from BACKWARD Procedure.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45
VAR VAR _

LATD INTER- .068 .042 .079 .084 .067 .071 .169
CEPT

LATD .783 .975 .876 1.045 1.068 1.149 1.024
LAG 1

LATD .099 -. 079 -. 171 -. 232 -. 208
LAG 2

LATD .131
LAG 3

LATD .116 .087 .084
LAG 4

LATD -. 177 -. 081 -. 088 -. 055 -. 154
LAG 5

LOND -. 109 -. 205 -. 113 -. 059 -. 041
LAG 1 .....

LOND .058 -. 058 .078 .061
LAG 2

LOND .065 .064 -. 074
LAG 3

LOND .085 .043
LAG 4 _

LOND .037 .030 -. 064
LAG 5

6 5n

STAT R-SQR .693 .735 .676 .804 .820 .803 .762

MSE .025 .033 .077 .061 .088 .119 .246

OBS 578 996 1344 1529 1256 1014 580
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Table B.11. LOND Bivariate Coefficients from BACKWARD Procedure.

I LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45
VAR VAR

LOND INTER- .043 .050 .061 -. 002 -. 048 -. 119 -. 373
CEPT

LATD .125 -. 406 .206
LAG 1

LATD .274 -,094 -. 230
LAG 2

LATD -. 115
LAG 3

LATD -. 096 -. 077
LAG 4

LATD
LAG 5

LOND .839 .882 .623 1.054 1.092 1.231 1.089
LAG 1
T OND -. 073 .077 -. 129 -. 262 -. 193
LAG 2

LOND .110 .074 .124 -. 150 .138
LAG 3

LOND .075 .091
LAG 4

LOND .051 -. 076 -. 067 -. 063 -. 233
LAG 5 1 1

- - -,- - I
STAT R-SQR .836 .811 .624 .838 .864 .854 .791

MSE .046 .074 .215 .112 .132 .199 .498

# OBS 578 996 1344 1529 1256 1014 580
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Table B.12. LATD Trivariate Coefficients (All Included).

= =LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45

LOND INTER- .070 .035 .076 .060 .019 .048 .010
CEPTT

LATD .775 .972 .897 1.043 1.061 1.131 1.030
LAG 1

LATD .100 -. 086 -. 065 -. 174 -. 228 -. 177 -. 001
LAG 2
LATD -. 013 .014 .067 .000 .111 .016 -. 129

LAG 32
LATD .128 -. 029 .060 .078 .029 -. 054 .110

LAG 4
LATD -. 183 .033 -. 077 -. 083 -. 071 .014 -. 170

LAG 5

LOND -. 111 -. 017 -. 215 -. 134 -. 060 -. 060 -. 032

LAG 1

LOND .058 -. 048 .107 .039 .045 .022 .096
LAG 2

LOND -. 013 .041 .038 .053 .021 .002 -. 120LA G 3 
__ __

LOND .016 .006 .009 .085 -. 023 .060 .052
LAG 4

LOND .032 .026 .029 -. 065 .016 -. 310 .006
LAG 5

WS Li .002 .001 .001 -. 000 .000 .004 .004

WS L2 -. 003 -. 001 -. 002 .002 -. 004 -. 003 .003

WS L3 .002 -. 002 .002 .001 -. 003 -. 004 .004

WS L4 -. 002 .003 -. 001 -. 003 -. 002 .006 -. 015

WS L5 .001 -. 001 .000 .001 .002 -. 003 .007

STAT R-SQR .695 .738 .677 .806 .821 .805 .772

MSE .026 .033 .078 .061 .088 .119 .241

# OBS 578 996 1344 1529 1256 1014 580
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Table 8.13. LOND Trivariate Coefficients (All Included)

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 3C-35 35-40 40-45

LOND INTER- .100 .054 .039 -. 057 -. 076 -. 095 -. 169
CEPT

LATD .155 .083 -. 401 .029 -. 001 -. 018 .193
LAG 1

LATD -. 053 -. 082 .233 -. 014 -. 093 -. 041 -. 276
LAG 2

LATD .045 -. 060 .034 .030 .003 -. 057 .176
LAG 3 1

LATD -. 160 .136 .004 -. 151 .010 -. 006 -. 133
LAG 4 _

LATD .066 -. 035 .010 .043 -. 026 .008 -. 003
LAG 5 _

LOND .859 .878 .617 1.055 1.089 1.233 1.083
LAG 1 _

LOND -. 031 -. 068 .091 -. 003 -. 108 -. 291 -. 212
LAG 2 _

LOND .121 .114 .105 -. 148 -. 065 .005 .182
LAG 3 _ __

LOND .033 -. 060 .05ý .097 .070 .068 -. 033
LAG 4 _

LOND -. 036 .072 .031 -. 089 -. 094 -.110 -. 218
LAG 5

WS Li -. 002 -. 002 -. 001 .000 .003 -. 001 -. 009

WS L2 .001 -. 002 .003 .002 -. 004 .007 .007

WS L3 .003 .003 -. 000 -. 002 .003 -. 002 -. 004

WS L4 -. 003 .002 -. 001 -. 001 .001 -. 007 -. 019

WS L5 .000 -. 001 .000 .002 -. 001 .002 -. 016

STAT R-SQR .840 .815 .625 .839 .865 .856 .796

MSE .045 .073 .216 .112 .133 .199 .493

OBS_578 996 1344 L 1529 1256 1014 580
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Table B.14. LATD Trivariate Coefficients from Stepwise Procedure.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45

LOND INTER- .068 .037 .078 .060 .019 .073 .001
CEPT

LATD .783 .971 .888 1.040 1.075 1.168 1.002
LAG 1

LATD .099 -. 075 -. 172 -. 241 .211
LAG 2

LATD .134
LAG 3

LATD .166 .079
LAG 4

LATD -. 176 -. 085 -. 056 -. 148
LAG 5

LOND -. 109 -. 208 -. 114
LAG 1

/LOND .058 -. 063 .077
LAG 2

LOND .046 .061 .074
LAG 3

LOND .036 .085
LAG 4

LOND .037 .027 -. 066
LAG 5

WS Li _ .001 .007

WS L2 .002

WS L3

WS L4 .001 -. 010

WS L5 .006

STAT R-SQR .693 .7 6 .674 .805 .820 .801 .768

MSE .025 .0ý3 .077 .061 .088 .120 .241

#OBS 578 996 1344 1529 1256 1014 580

82



I-NI

Table B.15. LOND Trivariate Coefficients from Stepwise Procedure.
LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 135-40 40-45

LOND INTER- .094 .052 .061 -. 046 -. 048 -. 094 -. 183
CEPT

LATD .122 -. 406 .198
LAG 1
LATD .275 -. 094 -. 109 -. 022
LAG 2

LATD
LAG 3

LATD -. 089 -. 080
LAG 4 [,

LATD
LAG 5 __

LOND .834 .864 .623 1.051 1.092 1.238 1.080
LAG I _

LOND .077 -. 129 -. 295 -. 200
LAG 2 _

LOND .110 .124 -. 149 .152
LAG 3 _

LOND .075 .091 .075
LAG 4

LOND .067 -. 079 -. 067 -.111 -. 230
LAG 5 _____ _ _

WS Li __-.005

WS L2 .005

WS L3 I

WS L4 -. 000 -. 005 .018

WS L5 .001 -. 015

STAT R-SQR .838 .810 .624 .838 .864 1.856 .795

MSE .045 .074 .215 .112 .132 .198 .491

I OBS 578 996 1344 1529 1256 1014 580
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Table B.16. LATD Trivariate Coefficients from Backward Procedure.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45

LOND INTER- .071 .034 .080 .060 .021 .071 .016
CEPT

LATD .775 .968 .876 1.040 1.064 1.149 .095
LAG I

LATD .094 -. 072 -. 172 -. 230 -. 208
LAG 2 _

LATD .129
LAG 3

LATD .115 .087 .079
LAG 4

LATD -. 176 -. 081 -. 085 -. 059 -. 146
LAG 5

LOND -.111 -. 205 -. 114 -. 061 -. 041
LAG 1

LOND .055 -. 066 .078 .059
LAG 2

LOND .046 .064 .074
LAG 3

LOND .085 .043
LAG 4

LOND .038 .029 .030 -. 066
LAG 5

WS Li .002 .001 .006

WS L2 -. 002 .002 .001

WS L3 -. 003 -. 001

WS L4 .002 -. 003

WS L5

STAT R-SQR .695 .737 .676 .805 .821 .803 .767

MSE .025 .033 .077 .061 .088 .119 .241

OBS 578 996 1344 1529 1256 1014 580
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Table B.17. LOND Trivariate Coefficients from Backward Procedure.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45

bTAND INTER- .096 .052 .061 -. 046 -. 048 -. 094 -. 183
CEPT

LATD .131 -. 406 .198
LAG 1
LATD -. 075 .275 -. 094 -. 109 -. 225
LAG 2

LATD
LAG 3

LATD -. 087 .075 -. 080
LAG 4

LITD
T!G 5

-OND .838 .866 .623 1.051 1.092 1.238 1.080
LAG 1

LOND .077 -. 129 -. 295 -. 200
LAG 2

LOND .110 .124 -. 149 .152
LAG 3

LOND .075 .091 .075
LAG 4

LOND .070 -. 079 -. 067 -.111 -. 230
LAG 5

WS Li -. 002 -. 003 -. 005

WS L2 .005
WS L3 .004 .003

WS L4 -. 003 -. 005 .018

WS L5 .001 -. 016

STAT R-SQTZ .839 .814 .624 .838 .864 .856 .795

MSE .045 .073 .215 .112 .132 .198 .491

I OBS 578 996 1344 1529 1256 1 1014 1580
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Table B.18. Wind Speed Coefficients (All included).

LATITUDEBANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45

WS INTER- .427 1.753 1.421 2.680 2.894 2.572 4.156
CEPT

LATD .904 .364 2.780 .643 .311 .148 -. 076
LAG 1

LATD 1.813 -. 389 -2.45 -. 910 -. 785 .010 .468
LAG 2

LATD -1.46 .662 1.664 -. 014 .330 .139 -. 997
LAG 3

LATD .243 -. 210 -. 328 .429 .144 -. 817 .460
LAG 4

LATD .555 .340 .286 -. 344 -. 285 .398 -. 324
LAG 5

LOND .204 .416 -. 836 .301 .344 .160 .329
LAG 1

LOND .572 -. 730 .985 -. 384 -. 570 -. 312 -. 215
LAG 2

LOND -. 732 -. 433 -. 491 .539 -. 055 .298 -. 537
LAG 3

LOND .728 -. 572 .386 -. 748 .231 .225 .733
LAG 4

LOND .128 .098 -. 108 .798 .509 -. 232 -. 316
LAG 5

WS Li 1.470 1.430 1.424 1.414 1.342 1.355 1.167

WS L2 -. 446 -. 401 -. 481 -. 413 -. 249 -. 249 -. 110

WS L3 -. 069 -. 011 .028 .029 -. 140 -. 14 -. 191

WS L4 .042 -. 038 .001 -. 127 .029 .016 .066

WS L5 -. 016 -. 014 .003 .052 -. 026 -. 022 -. 030

STAT R-SQR .973 .964 .957 .960 .970 .960 .924

.MSE 21.99 36.91 39.89 36.08 18.22 18.30 23.81

#OBS 578 996 1344 1529 1256 1014 580
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Table B.19. Wind Speed Coefficients (Stepwise & BackwarD).

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45

WS INTER- .422 2.212 1.565 2.611 2.795 2.345 4.140
CEPT

LATD 1.697
LAG 1

LATD 2.032
LAG 2

LATD -. 471
LAG 3

LATD
LAG 4

LATD
LAG 5

LOND
LAG 1

LOND
LAG 2

LOND
LAG 3

LOND .883
LAG 4

LOND .466 .447
LAG 5

WS Li 1.487 1.436 1.409 1.409 1.342 1.359 1.164

WS L2 -. 505 -. 409 -. 436 -. 394 -. 243 -. 243 -. 106

WS L3 -. 144 -. 162 -.156

W, L4 -. 061 -. 109 __

WS L5 .050

STAT R-SQR .972 .963 .957 .960 .969 .960 .924

MSE 21.71 36.53 39.76 35.94 18.14 18.20 23.56

#OBS 578 996 1344 1529 1256 1014 580
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Table B.20. LATD - FINAL Trivariate Coefficients.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45

LATD INTER- .065 .044 .091 .066 .019 .079 .029
CEPT

LATD .766 .954 .880 1.036 1.081 1.132 .996
LAG 1
LATD .107 -. 063 -. 158 -. 253 -. 193
LAG 2 _ _ _ _ _ _ _ _ _

LATD .138
LAG 3

LATD .088 .075 .068 -. 073
LAG 4

LATD -. 143 -. 087 -. 079 -. 137
LAG 5

LOND -. 105 -. 206 -. 114 -. 053 -. 057
LAG 1

LOND .054 -. 034 .078
LAG 2

LOND .065 .098 .051 -. 070
LAG 3

LOND .129 .065
LAG 4

LOND .038 .039 .030 -. 066
LAG 5

WS Li .002 .001 .001

WS L2 -. 002 . ........ .... .007

WS L3 -. 001 .002

WS L4 -. 002 -. 005

WS L5

STAT R-SQR .690 .735 .691 .800 .820 .797 .762

MSE .025 .033 .079 .065 .087 .124 .239

IOBS 659 1140 1467 1696 1346 1006 590
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Table B.21. LOND - FINAL Trivariate Coefficients.

___"_ _____LATITUDE BANDS ......

DEP INDEP 10-15 15-20 20-25 125-30 30-35 35-40 40-45

LOND INTER- .085 .049 .058 -. 057 -. 039 -. 103 -. 153
CEPT

LATD .136 -. 383 -. 049 .183
LAG 1

LATD .251 -. 208
LAG 2

LATD -. 129
LAG 3

LATD -. 179 -. 078
LAG 4

LATD .109 -. 056
LAG 5

LOND .840 .855 .634 1.049 1.102 1.216 1.062
LAG 1

LOND .093 -. 073 -. 246 -. 152
LAG 2

LOND .116 .119 --. 142 -. 081 .106
LAG 3

LOND .065 .064
LAG 4

LOND .075 -. 063 -. 043 -. 078 -. 218
LAG 5

WS Li-1 -. 001 -. 006

WS L2 -. 005 .001 .005

WS L3 .005

WS L4 -. 005 .015

WS L5 -. 013
= I"" - T - ii

STAT R-SQR .840 .817 .647 .837 .863 .865 .799

MSE .046 .071 .206 .112 .137 .192 .479

# OBS 659 1140 1A67 1696 1346 1006 590
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Table B.22. WS FINAL Trivariate Coefficients.

LATITUDE BANDS

DEP INDEP 10-15 15-20 20-25 25-30 30-35 35-40 40-45

WS INTER- .586 2.116 1.b17 2.748 2.825 2.380 4.300
CEPT

LATD 1.457 1.529
LAG 1

LATD
LAG 2

LATD
LAG 3

LATD .622
LAG 4

LATD
LAG 5

LOND
LAG 1

LOND
LAG 2

LOND
LAG 3

LOND
LAG 4

LOND .389 .422
LAG 5

WS Li 1.516 1.449 1.432 1.409 1.334 1.359 1.163

WS L2 -. 530 -. 425 -. 464 -. 399 -. 224 -. 264 --. 103

WS L3 -. 156 -. 142 -. 167

WS L4 -. 056 -. 100
WS L5 .045

STAT R-SQR .972 .965 .955 .960 .967 .957 .920

MSE 21.43 35.21 40.67 34.53 18.41 18.70 23.43

OBS 659 1140 1467 1696 1346 I1006 590
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Appendix C. Summary Statistics on the Modc'-Building Data Set

Table C. 1. MEAN (STD) 6 Hour Forecast Summary Statistics on Test

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: MODEL BUILDING DATA BASE (351 storms)

6HR FORECAST
MODEL I DIST WS LAT LON
1.CURRY 7069. 17.0(24.4) 0.2(5.8) 0.1(0.3) -0.1(0.4)
2.UNI FULL 7069. 14.1(22.5) -0.2(5.8) 0.0(0.3) 0.0(0.4)
3.UNI STEP 7069. 14.1(22.5) -0.2(5.8) 0.0(0.3) 0.0(0.4)
4.UNI BACK 7069. 14.1(22.5) -0.2(5.8) 0.0(0.3) 0.0(0.4)
5.BI FULL 7069. 14.0(22.1) -0.2(5.8) 0.0(0.3) 0.0(0.4)
6.BI STEP 7069. 14.4(22.3) -0.2(5.8) 0.0(0.3) 0.0(0.4)
7.BI BACK 7069. 14.2(22.2) -0.2(5.8) 0.0(0.3) 0.0(0.4)
8.TRI FULL 7069. 15.3(22.5) -0.2(5.8) 0.0(0.3) 0.0(0.4)
9.TRI STEP 7069. 15.0(22.2) -0.2(3.8) 0.0(0.3) 0.0(0.4)

10.TRI BACK 7069. 14.0(22.1) -0.2(5.8) 0.0(0.3) 0.0(0.4)
11.CURRY NEW 7069. 14.1(22.5) -0.2(5.8) 0.0(0.3) 0.0(0.4)

Table C.2. MEAN (STD) 12 Hour Forecast Summary Statistics on Test

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: MODEL BUILDING DATA BASE (351 storms)

12HR FORECAST
MODEL I DIST WS LAT LON
1.CURRY 6735. 48.7(45.3) -0.3(9.9) 0.2(0.7) -0.3(1.0)
2.UNI FULL 6734. 42.2(39.9) -0.3(9.8) 0.0(0.6) 0.0(0.9)
3.UNI STEP 6734. 42.3(40.0) -0.3(9.8) 0.0(0.6) 0.0(0.9)
4.UNI BACK 6734. 42.3(39.9) -0.3(9.8) 0.0(0.6) 0.0(0.9)
5.BI FULL 6734. 41.7(39.1) -0.3(9.8) 0.0(0.6) 0.0(0.9)
6.BI STEP 6734. 42.9(39.8) -0.3(9.8) 0.0(0.7) 0.0(0.9)
7.BI BACK 6734. 42.2(39.5) -0.3(9.8) 0.0(0.6) 0.0(0.8)
8.TRI FULL 6735. 44.9(41.4) -0,3(9.8) -0.1(0.7) 0.0(0.8)
9.TRI STEP 6734. 44.4(39.4) -0.3(9.3) -0.1(0.7) 0.0(0.9)

10.TRI BACK 6734. 41.5(39.2) -0.3(9.8) 0.0(0.6) 0.0(0.9)
11.CURRY NEW 6734. 41.9(40.0) -0.3(9.8) 0.0(0.6) 0.0(0.9)
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Table C.3. MEAN (STD) 24 Hour Forecast Summary Statistics on Test

WS MATRIX:' WS BACK (351 storms used in parameter estimation)

DATA: MODEL BUILDING DATA BASE (351 stori~s)

24HR FORECAST
MODEL IDIST WS LAT LON
1.CURRY 6083. 120.0(95.1) -0.1(15.6) 0.5(1.6) -0.7(2.3)
2.UNI FULL ..6061. 106.0(80.5) 0.0(15.6) 0.0(1.4) 0.0(2.0)
3.UNI STEP 6060. 106.2(80O.6) 0.0(15.6) 0.0(1.4) 0.0(2.0)
4.UNI BACK 6060. 106.1(80.5) 0.0(15.6) 0.0(1.4) 0.0(2.0)
5.BI FULL. 6062. 104.6(78.2) 0.0(15.6) -0.1(1.4) 0.0(2.0)
6.BI STEP 6060. 108.6(81.0) 0.0(15.6) 0.1(1.6) 0.0(2.0)
7.BI BACK 6061. 106.4(79.4) 0.0(15.5) 0.0(1.5) 0.0(2.0)
8.TRI FULL 6052. 113.6(88.3) 0.0(15.6) -0.3(1.7) -0.1(2.0)
9.TRI STEP .6063. 112.5(80.4) -0.1(15.6) -0.4(1.6) -0.1(2.0)

10.TRI BACK 6065. 103.5(78.2) 0.0(15.6) -0.1(1.4) 0.0(2.0)
11.CURRY NEW 60613. 105.0(80.4) 0.0(15.5) -0.1(1.) 0.0(2.0)

Table C.4. MEAN (STD) 48 Hour Forecast Summary Statistics Test

WS HA¶TRIX: WS BACK (351 storms u~sed in parameter est I mation)

DATA: MODEL BUILDING DATA BASE (351 stc~rms)

48HR FORECAST
MODEL I DIST WS LATý LON
1.CURIR.' 4878. 269.8(196.4) 1.7(21.6) 1.2(3.ý) -1.7(5.1)
2.UNI FULL 4740.- 250.0(17016) 1.8(21.7) -0.2(3.1~) 0.1(4.8)
3.UNI STEP 4740. 250.3(169.0) 1.8(21.7) -0.2(341) 0.2(4.7)
4.UNI BACK 4741. 250.5(170.4) 1.8(21.7) -0:22(3:;) 0.1(4.8)
5.BI FULL 4745. 246.2(163.7) 1.8(21.7) -0.3(3 1) 0.4(4.6)
6.BI STEP 4741. 259.1(177.6) 1.9(21.7) 0.1(3:6) 0.1(4.6)
7.BI BACK 4741. 253.3(172.7) 1.8(21.7) 0.0(3.4) 0.1(4.6)
8.TrlI FULL 4550. 254.1(173.3) 2.0(21.9) -0.3(3.5) -0.1(4.5)
9.TRI STEP 4742. 267.9(173.3) 1.8(21.7) -1.4(3.5) 0.3(4.6)

10.TRI BACK 4740. 242.2(163.7) 1.7(21.7) -0.3(3.1) 0.1(4.5)
11.CURRY NEW 4738. 245.3(168.0) 1.8(21.7) -0.3(3.1) 0.1(4.6)
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Table C.5. MEA' TD) 72 Hour Forecast Summary Statistics Test

WS MATRIX: W.ý bACK (351 storms used in parameter estimation)

DATA: MODEL BUILDING DATA BASE (351 storms)

72HR FORECAST
MODEL # DIST WS LAT LON
1.CURRY 3881. 406.7(284.9) 3.4(24.2) 1.7(4.5) -2.7(7.7)
2.UNI FULL 3642. 386.2(246.1) 3.7(24.6) -0.6(4.6) 0.5(7.4)
3.UNI STEP 3638. 387.8(246.6) 3.E(24.6) -0.5(4.6) 0.5(;.4)
4.UNI BACK 3638. 387.7(246.6) 3.6(24.6) -0.5(4.6) 0.5(7.4)
5.BI FULL 3636. 380.2(237.3) 3.e(24.6) -0.7(4.6) 0.9(7.0)
6.BI STEP 3636. 404.6(273.6) 3.9(24.6) 0.1(5.4) 0.3(7.3)
7.BI BACK 3641. 395.4(264.2) 3.7(24.6) 0.0(5.1) 0.3(7.2)
8.TRI FULL 3439. 383.3(242.5) 4.0(24.9) -0.3(4.9) -0.1(6.9)
9.TRI STEP 3596. 426.4(268.4) 4.5(24.7) -2.6(5.2) 1.3(7.3)

10.TRI BACK 3648. 375.8(240.0) 3.7(24.6) -0.6(4.6) 0.5(7.1)
I1.CURRY NEW 3637. 378.P(241.4) 3.7(24.5) -0.6(4.6) 0.5(7.1)

Table C.6. MSPR 6 Hour Forecast Summary Statistics on Model

WS MATRIX: WS BACK (351 storms used in paramater estimation)

DATA: MODEL BUILDING DATA BASE (351 storms)

6HR FORECAST
MODEL I DIST WS LAT LON

I.CURRY 7069. 885.23 34.00 0.11 0.21
2.UNI FULL 7069. 705.33 34.00 0.09 0.17
3.UNI STEP 7069. 707.08 34.00 0.09 0.17
4.UNI BACK 7069. 706.04 34.00 0.09 0.17
5.BI FULL 7069. 686.10 34.00 0.08 0.16
6.BI STEP 7069. 707.29 34.00 0.09 0.16
7.BI BACK 7069. 695.96 34.00 0.09 0.16
8.TRI FULL 7069. 739.67 34.00 0.10 0.16
9.TRI STEP 7069. 717.54 34.00 0.09 0.16

10.TRI BACK 7069. 685.49 34.00 0.08 0.16
11.CURRY NEW 7069. 705.70 34.00 0.09 0.17
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Table C.7. MSPR 12 Hour Forecast Summary Statistics on Model

WS MATRIX: WS BACK (351 storms usod in parameter estimation)

DATA: MODEL BUIIDING DATA BASE (351 storms)

12HR FORECAST
MODEL I DIST WS LAT LON

I.CURRY 6735. 4419.33 97.17 0.54 1.00
2.UNI FULL 6734. 3372.48 96.91 0.41 0.75
3.UNI STEP 6734. 3384.61 96.93 0.41 0.75
4.UNI BACK, 6734. 3379.43 96.92 0.41 0.75
5.BI FULL 6734. 3261.92 96.92 .0.40 0.73
6.BI STEP 6734. 3424.98 96.95 0.44 0.72
7.BI BACK 6734. 3337.13 96.95 0.42 0.72
S.TRI FULL 6735. 3724.98 96.97 0.53 0.72
9.TRI iJTEP 6734. 3524.12 96.95 0.47 0.73

10.TRI BACK 6734. 3258.57 96.93 0.40 0.73
11.CURRY NEW 6734. 3355.13 96.91 0.40 0.75

Table C.S. MSPR 24 Hour Forecast Summary Statistics on Model

US MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: MODEL BUILDING DATA BASE (351 storms)

24HR FORECAST
MODEL I DIST WS LAT LON

1.CURRY 6083. 23453.96 242.37 2.70 5.62
2.UNI FULL 6061. 17719.36 241.80 2.07 4.13
3.UNI STEP 6060. 17771.14 241.94 2.09 4.13
4.UNI BACK 6060. 17737.66 241.93 2.08 4.13
5.BI FULL 6062. 17043.48 241.81 2.02 3.92
6.BI STEP 6060. 18346.14 241.99 2.42 3.87
7.BI BACK 6061. 17624.23 241.76 2.23 3.86
8.TRI FULL 6052. 20703.30 242.00 3.11 3.83
9.TRI STEP 6063. 19133.20 241.95 2.67 3.84

10.TRI BACK 6065. 16838.73 241.77 2.02 3.84
11.CURRY NEW 6063. 17487.40 241.59 2.05 4.05
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Table C.9. MSPR 48 Hour Forecast Summary Statistics on Model

WS MATRIX; WS BACK (351 storms used in parameter estimation)

DATA: MODEL BUILDING DATA BASE (351 storms)

48HR FORECAST
MODEL I DIST WS LAT LON

I.CURRY 4878. 111336.02 467.29 11.60 28.38
2.UNI FULL 4740. 91587.85 473.45 9.92 22.68
3.UNI STEP 4740. 91186.86 473.78 9.95 22.44
4.UNI BACK 4741. 91748.20 473.90 10.00 22.61
5.BI FULL 4745. 87430.01 473.01 9.82 21.05
6.BI STEP 4741. 98658.22 473.86 12.78 21.17
7.BI BACK 4741. 93966.67 473.84 11.56 21.09
8.TRI FULL 4550. 94616.66 484.41 12.41 20.03
9.TRI STEP 4742. 101821.97 472.05 14.10 20.81

10.TRI BACK 4740. 85437.84 472.91 9.62 20.54
11.CURRY NEW 4738. 88371.16 473.29 9.81 21.46

Table C. 10. MSPR 72 Hour Forecast Summary Statistics on Model

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: MODEL BUILDING DATA BASE (351 storms)

72HR FORECAST
MODEL I DIST WS LAT LON

1.CURRY 3881. 246557.88 594.44 23.44 66.09
2.UNI FULL 3642. 209730.17 619.33 21.28 54.32
3.UNI STEP 3638. 211204.59 618.14 21.53 54.55
4.UNI BACK 3638. 211062.67 617.94 21.49 54.55
5.BI FULL 3636. 200811.08 619.01 21.22 50.31
6.BI STEP 3636. 238521.62 621.53 29.35 53.44
7.BI BACK 3641. 226068.36 618.58 26.51 52.63
8.TRI FULL 3439. 205692.69 636.55 24.34 47.00
9.TRI STEP 3596. 253823.28 631.58 34.06 54.53

10.TRI BACK 3648. 198780.30 616.60 21.12 49.96
11.CURRY NEW 3637. 201737.72 616.22 21.49 50.43
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Appendix D. Summary Statistics on Test Data Set

Table D. 1. MEAN (STD) 6 Hour Forecast Statistics of Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 storms)

6HR FORECAST
MODEL IDIST WS LAT LON

1.CURRY 768.- 18.6(22.9) -0.5(5.5) 0.1(0.3) -0.1(0.4)
2.UNI FULL 768. 15.6(21.7) -0.5(5.5) 0.0(0.3) 0.0(0.4)
3.UNI STEP 768. 15.7(21.5) -0.5(5.5) 0.0(0.3) 0.0(0.4)
4.UNI BACK 768. 15.8(21.6) -0.5(5.5) 0.0(0.3) 0.0(0.4)
5.BI FULL 768. 15.3(21.2) -0.5(5.5). 0.0(0.3) 0.0(0.4)
6.BI STEP 768. 15.6(21.6) -0.5(5.5) 0.0(0.3) 0.0(0.4)
7.BI BACK 768. 15.5(21.4) -0.5(5.5) 0.0(0.3) 0.0(0.4)
8.TRI FULL 768. 15.5(21.8) -0.5(5.5) 0.0(0.3) 0.0(0.4)
9.TRI STEP 768. 15.7(21.6) -0.5(5.5) 0.0(0.3) 0.0(0.4)
10.TRI BACK 768. 15.4(21.4) -0.5(5.5) 0.0(0.3) 0.0(0.4)
11.CURRY NEW 768. 15.2(21.2) -0.5(5.5) 0.0(0.3) 0.0(0.4)

Table D.2. MEAN (STD) 12 Hour Forecast Statistics of Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 storms)

12HR FORECAST -
MODEL I DIST WS I)AT LON

1.CURRY 727. 51.8(45.4) -1.0(9.8) 0.2(0.8) -0.3(1.0)
2.UNI FULL 727. 44.8(41.5) -1.0(9.8) 0.0(0.7) 0.0(0.9)
3.UNI STEP 727. 44.7(41.5) -1.0(9.8) 0.0(0.7) 0.0(0.9)
4.UNI BACK 727. 44.8(41.5) -1.0(9.8) 0.0(0.7) 0.0(0.9)
5.BI FULL 727. 44.1(39.7) -1.0(9.8) 0.0(0.7) 0.0(0.8)
6.BI STEP 727. 45.8(40.5) -1.0(9.8)ý 0.0(0.7) 0.0(0.8)
7.BI BACK 727. 44.8(40.0) -1.0(9.8) 0.0(0.7) 0.0(0.8)
8.TRI FULL 727. 45.1(41.1) -1.0(9.8) 0.0(0.7) 0.0(0.8)
9.TRI STEP 727. 46.0(40.4) -1.0(9.8) -0.1(0.7) -0.1(0.8)
10.TRI BACK 727. 44.3(39.7) -1.0(9.8) 0.0(0.7) 0.0(0.8)
11.CURRY NEW 727. 4423.)-1.0(9.8) 0.0(0.7) 0.0(0.8)
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Table D.3. MEAN (STD) 24 Hour Forecast Statistics of Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 storms)

24HR FORECAST
MODEL IDIST WS LAT LON
1.CURRY 647. 128.7(106.8) -1.5(15.8) 0.6(1.8) -0.7(2.4)

2.UNI FULL 644. 116.4(97.5) -1.6(15.9) 0.1(1.7) -0.1(2.2)
3.UNI STEP 644. 116.3(97.7) -1.6(15.9) 0.1(1.7) -0.1(2.2)
4.UNI BACK 644. 116.4(97.6) -1.6(15.9) 0.1(1.7) -0.1(2.2)
.5.BI FULL 644. 113.8(92.8) -1.5(15.9) 0.0(1.7) -0.1(2.1)
6.BI STEP 644. 118.5(95.6) -1.5(15.-9) 0.1(1.8) -0.1(2.1)
7.BI BACK 644. 116.0(93.6) -1.6(15.9) 0.1(1.7) -0.1(2.1)
8.TRI FULL 644. 116.5(97.4) -1.5(15.9) 0.1(1.8) -0.1(2.1)
9.TRI STEP 644. 120.0(95.8) -1.6(15.9) -0.3(1.8) -0.2(2.1)
10.TRI BACK 644. 113.8(93.0) -1.5(15.9) 0.1(1.7) -0.1(2.1)
11.CURRY NEW 644. 114.1(93.1) -1.5(15.9) 0.1(1.7) -0.1(2.1)

Table D.4. MEAN (STD) 48 Hour Forecast Statistics of Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 storms)

48HR FORECAST
MODEL IDIST WS LAT LON
1.CURRY 501. 287-.1(227.0) -1.8(19.3) 1.2(3.7) -1.6(5.4)
2.UNI FULL 485. 270.9(212.4) -2.1(19.7) 0.0(3.7) -0.1(5.2)
3.UNI STEP 484. 270.1(210.1) -2.1(19.7) 0.1(3.7) -0.1(5.2)
4.UNI BACK 484. 270.3(210.3) -2.1(19.7) 0.0(3.7) -0.1(5.2)
5.BI FULL 486. 269.9(207.7) -2.1(19.7) -0.1(3.7) -0.1(5.1)
6.BI STEP 484. 272.9(207.9) -2.1(19.7). 0.0(3.9) -0.2(5.1)
7.BI BACK 486. 2,71.5(208.2) -2.0(19.7) -0.1(3.8) -0.2(5.0)
8.TRI FULL 481. 274.0(217.5) -2.0(19.8) 0.1(4.0) -0.4(5.0)
9.TRI STEP 486. 285.0(210.7) -2.1(19.7) -0.9(4.0) -0.1(5.1)
10.TRI BACK 488. 267.6(206.3) -2.0(19.7) -0.1(3.8) -0.2(5.0)
11.CURRY NEW 486. 270.7(206.7) -2.0(19.7) -0.1(3.7) -0.2(5.1)
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Table D.5. MEAN (STD) 72 Hour Forecast Statistics of Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 storms)

72HR FORECAST
MODEL I DIST WS LAT LON

1.CURRY 397. 409.8(326.3) -2.4(20.6) 1.8(5.2) -2.5(7.6)
2.UNI FULL 377. 416.7(310.5) -2.9(21.0) -0.3(5.5) 0.2(8.0)

- 3.UNI STEP 377. 416.2(310.3) -2.8(21.0) -0.1(5.5) 0.2(8.0)
4.UNI BACK 377. 417.1(310.9) -2.8(21.0) -0.2(5.5) 0.2(8.0)
5.BI FULL 378. 420.7(308.5) -2.9(21.1) -0.5(5.5) 0.1(8.1)
6.BI STEP 374. 417.6(315.4) -2.9(21.2) -0.2(5.7) -0.2(8.0)
7.BI BACK 377. 419.7(317.6) -2.8(21.1) -0.4(5.6) -0.1(8.1)
8.TRI FULL 362. 429.5(321.6) -2.7(21.3) 0.0(6.1) -0.9(7.8)
9.TRI STEP 375. 440.9(316.4) -2 6(21.4) -1.5(5.8) 0.1(8.2)
10.TRI BACK 377. 415.0(305.7) -2.8(21.1) -0.4(5.5) 0.0(7.9)
11.CURRY NEW 378. 424.5(311.5) -2.8(21.1) -0.3(5.6) -0.1(8.2)

Table D.6. MSPR 6 Hour Forecast Statistics of the Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 storms)

6HR FORECAST
MODEL I DIST WS LAT LON

1.CURRY 768. 868.53 30.09 0.13 0.18
2.UNI FULL 768. 712.57 30.09 0.11 0.14
3.UNI STEP 768. 710.17 30.09 0.11 0.14
4.UNI BACK 768. 712.91 30.09 0.11 0.14

-....5.BI FULL 768. 682.70 30.09 0.10 0.14
6.BI STEP 768. 706.34 30.09 0.11 0.14
7.BI BACK 768. 695.38 30.09 0.11 0.14
8.TRI FULL 768. -715.37 30.09 0.11 0.14
9.TRI STEP 768. 714.24 30.09 0.11 0.14
10.TRI BACK 768. 695.54 30.09 0.10 0.14
11.CURRY NEW 768. 680.63 30.09 0.10 0.14
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Table D.7. MSPR 12 Hour Forecast Statistics of the Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 storms)

12HR FORECAST
MODEL I DIST WS LAT LON

1.CURRY 727. 4738.33 96.27 0.62 1.00
2.UNI FULL 727. 3721.29 96.36 0.51 0.73
3.UNI STEP 727. 3719.94 96.44 0.51 0.73
4.UNI BACK 727. 3725.77 96.45 0.51 0.74
5.BI FULL 727. 3516.11 96.17 0.47 0.70
6.BI STEP 727. 3731.85 96.22 0.53 0.70
7.BI BACK 727. 3605.24 96.21 0.50 0.70
8.TRI FULL 727. 3716.70 96.35 0.52 0.71
9.TRI STEP 727. 3746.27 96.31 0.53 0.71
10.TRI BACK 727. 3532.88 96.18 0.47 0.71
11.CURRY NEW 727. 3520.84 96.18 0.46 0.71

Table D.8. MSPR 24 Hour Forecast Statistics of the Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 storms)

24HR FORECAST
MODEL I DIST WS LAT LON

1.CURRY 647. 27953.86 252.45 3.41 6.31
2.UNI FULL 644. 23035.03 254.82 3.00 4.77
3.UNI STEP 644. 23048.82 254.45 3.00 4.77
4.UNI BACK 644. 23050.85 254.50 3.00 4.77
5.BT FULL 644. 21545.08 254.26 2.78 4.49
6.BI STEP 644. 23167.71 253.87 3.27 4.45
7.Bi BACK 644. 22214.30 254.49 3.00 4.46
8.T11I FULL 644. 23051.05 254.75 3.21 4.47
9.TRI STEP 644. 23559.33 254.29 3.36 4.48
10.TRI BACK 644. 21569.52 254.27 2.81 4.46
11. CRRY NEW 644. 21677.14 254.17 2.76 4.57
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Table D.9. MSPR 48 Hour Forecast Statistics of the Test Data Set

" WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 storms)

48HR FORECAST
MODEL # DIST WS LAT LON

1.CURRY 501. 133809.02 375.54 15.01 32.05
2.UNI FULL 485. 118394.72 392.28 13.84 27.00
3.UNI STEP 484. 117027.34 391.32 13.43 27.03
4.UNI BACK 484. 117177.00 391.38 13.46 27.05
5.BI FULL 486. 115918.79 391.37 13.98 26.00
6.BI STEP 484. 117614.91 390.59 14.90 25.50
7.BI BACK 486. 116929.97 390.47 14.70 25.47
8.TRI FULL 481. 122253.40 394.09 16.21 25.03
"9.TRI STEP 486. 125552.82 390.86 16.64 26.28
10.TRI BACK 488. 114066.02 389.80 14.06 25.16
11.CURRY NEW 486. 115928.04 390.05 13.78 26.21

STable D. 10. MSPR 72 Hour Forecast Statistics of the Test Data Set

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: TEST DATA BASE (45 storms)

72HR FORECAST
MODEL I DIST WS LAT LON

1.CURRY 397. 274112.28 427.93 30.45 64.59
2.UNI FULL 377. 269748.00 449.55 30.34 64.41
3.UNI STEP 377. 269224.75 447.18 30.19 64.38
4.UNI BACK 377 -. 270342.22 447.11 30.37 64.58 ....
5.BI FULL 378. 271941.03 451.93 30.86 65.32
6.BI STEP 374. 273584.81 454.78 32.15 63.46
7.BI BACK 377. 276816.19 453.90 31.58 66.17
8.TRI FULL 362. 287606.34 458.87 36.98 61.45
9.TRI STEP 375. 294289.78 461.23 35.68 67.51
10.TRI BACK 377. 265396.12 450.27 30.61 62.72
11.CURRY NEW 378. 277001.84 451.27 31.04 66.90
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Appendix E. Latitude Band Summary Statist;cs

Table E. 1. Latitude Band Statistics for TRI BACK Model Building Data Set

Latitude Band (10-15N degrees)

FORECAST I OBS MEAN STDEV WS MEAN WS STDEV

6HR 573. 6.7653 12.2422 0.1281 5.1500

12HR 560. 23.6436 21.9744 0.1112 9.1307

S24HR 539. 62.2748 52.4679 -0.0477 16.0402

48HR 495. 151.9235 107.7578 -1.5302 25.7951

72HR 454. 248.9276 163.7661 -3.2511 30.2339

Latitude Band (15-20N degrees)

FORECAST I OBS MEAN STDEV WS MFAN WS STDEV

6HR 1093 9.697 26.8171 0.3991 6.7007

12HR 1064 31.340 39.4336 0.8182 11.5994

24HR 1008 77.606 56.8642 1.8014 18.4160

48HR 909 186.013 104.8636 2.0806 24.8898

- 72HR 820 300.984 166.7077 1.0684 27.4578

Latitude Band (20-25N degrees)

FORECAST I OBS MEAN STDEV WS MEAN WS STDEV

6HR 1325 11.749 18.7925 -0.0465 6.1376

12HR 1302 35.189 35.3651 -0.1479 10.8514

24HR 1253 87.757 69.1663 -0.7282 17.5982

48HR 1114 219.010 156.2066 -2.3232 23.4018

72HR 925 363.820 253.2657 -3.4279 25.5090

/
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Latitude Band (25-30N degrees)

FORECAST I OBS MEAN STDEV WS MEAN WS STDEV

6HR 1485. 12.5877 18.7460 0.3335 6.8726

12HR 1423. 39.9149 33.8797 0.4782 11.0966

24HR 1280. 106.4818 74.0642 -0.3750 16.1912

48hR 1028. 271.7776 171.0655 -4.0984 20.4844

72HR 783. 429.4855 245.1899 -8.0006 20.4054

Latitude Band (30-35N degrees)

FORECAST # OBS MEAN STDEV WS MEAN WS STDEV

S6HR 1212. 15.0224 19.9092 0.1173 4.5306

12HR 1176. 47.5794 37.4706 0.0962 7.4928

24HR 1108. 127.1264 81.7755 -0.1490 11.5852

48HR 825. 310.5803 173.2355 -2.0892 14.9582

-72HR 519. 496.1300 244.4717 -4.7290 17.3825

Latitude Band (35-40N degrees)

FORECAST IOBS MAN STDEV WS MEAN WS STDEV

6HR 946. 20.4041 25.1931 0.2675 4.4091

12HR 900. 58.8302 47.9440 0.5432 7.2945

24HR 704. 140.3747 94.5617 0.1103 11. 1681
S48HR 336. 320.4381 177.8245 -2.8090 15.9747

72HR 139. 526.7996 270.5906 -7.6553 18.3389
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Latitude Band (40-45N degrees)

FORECAST # OBS MEAN STDEV WS MEAN WS STDEV

6HR 435. 28.8181 27.5730 0.2811 5.3571

12HR 309. 68.3533 43.6306 0.3054 7.9838

24HR 173. 174.9660 86.8047 0.0670 11.5460

48HR 33. 495.5752 267.7177 2.6279 12.7545

72HR 8. 926.3521 245.4992 7.6454 12.4335
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Table E.2. Latitude Band Statistics for TRI BACK Model Test Data Set

Latitude Band (10-15N degrees)

FORECAST #OBS MEAN STDEV WS MEAN WS STDEV

6HR 82. 5.9674 12.2625 0.0018 6.9753

12HR 80. 22.2019 21.6425 0.0473 12.9827

24HR 76. 54.4327 30.0039 -0.3189 22.3092

48HR 68. 118.5596 60.0564 0.5159 23.6850

72HR 64. 207.2246 123.3377 3.8483 21.7294

, Latitude Band (15-20N degrees)

FORECAST # OBS MEAN STDEV WS MEAN WS STDEV

6HR 142. 9.4401 15.4509 0.4973 4.9445

"12HR 141. 29.4171 29.5486 1.3106 9.4029

24HR 141. 75.7104 55.3563 3.6633 17.9358

48HR 134. 190.4036 137.5752 6.4974 23.5444

72HR 118. 317.8708 268.9904 8.2312 27.3040

.. Latitude Band (20-25N degrees)

FORECAST # OBS MEAN STDEV WS MEAN WS STDEV

•6HR 118. 16.6161 19.0540 1.3386 6.1561

12HR 112. 47.8628 37.2701 2.9517 12.1397

24HR 98. 129.7444 99.8359 3.7788 17.3478

48HR 67. 343.8527 285.1470 2.5967 18.1608

72HR 43. 536.0518 412.4499 -2.6088 14.2447
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Latitude Band (25-30N degrees)

FORECAST # OBS MEAN STDEV WS MEAN WS STDEV

6HR 171. 17.5547 20.0380 0.3134 5.6981

12RR 164. 50.8185 39.5196 0.5613 10.1537

24HR 140. 136.3872 104.0475 0.1404. 14.1743

48HR 95. 355.6502 239.7585 -2.2455 18.1464

72HR 61. 537.7274 292.3365 -3.2326 18.5527

Latitude Band (30-35N degrees)

FORECAST # OBS MEAN STDEV WS MEAN WS STDEV

6HR 159. 16.5927 23.3355 0.6983 5.1365

12HR 150. 50.5033 47.6325 0.6613 6.8715

24HR 141. 137.2958 103.3371 1.2092 10.8538

48HR 109. 328.0773 168.2353 2.0904 12.5604

72HR 84. 557.3478 267.1497 2.7889 11.8182

Latitude Band (35-40N degrees)

FORECAST # CBS MEAN STDEV WS MEAN WS STDEV

6HR 60. 21.5317 25.9186 -0.0128 3.8465

12HR 58. 59.2690 40.6763 -0.2109 6.2751

24KR 35. 135.0978 88.8907 -3.2292 9.7493

"48HR 14. 283.3974 142.4806 -9.8549 5.8591

72HR 7. 429.2936 253.3595 -9.9094 11.5456
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Latitude Band (40-45N degrees)

F OREC A S T I O B S M E A N S T D E V W S M E A N W S S T D EW

6HR 36. 30.8428 35.9494 -0.1945 3.295512HR 22. 70.0513 39.1518 0.3533 4.6025

24HR 13. 196.4097 78.2726 4.3727 5.9167

48HR 1. 454.3116 NaN 16.1591 NaN

72HR 0. NaN NaN NaN NaN
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Appendix F. Histograms

This Appendix contains frequency histograms of the great circle distance (GCD) forecast
enrors of the test set. The forecast model used was the TRI BACK model.
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Figure F.2. Histogram of !2 Hour GCD Forecast Error for TRI BACK.
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Figure P.3. Histogram of 24 Hour GCD Forecast Error for TRI BACK.

110



Fr e que n cy H i s to gr am

o f 48 H o ur Fo r ec ast E r ror s

60

020

20

0 -

0 300 6 00 900 1200 1500

GCD

Figure F.4. Histogram of 48 Hour GCD Forecast Error for TRI BACK.
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Appendi G. FINAL Comparison Summary Tables

Table G. 1. Summary Statistics of Mean Squared Prediction Errors (MSPR)

WS MATRIX: WS BACK (351 storms used in parameter estimation)

DATA: ENTIRE DATA BASE (395 storms)

6HR FORECAST
MODEL ''DIST WS LAT LON

1.CURRY 7394. 879.82 33.50 0.11 0.21
2.TRI BACK 7394. 681.19 33.50 0,08 0.16
3.FINAL 7394. 678.05 33.50 0.08 0.16

12HR FORECAST
MODEL # DIST WS LAT LON

1.CURRY 7038. 4408.62 95.57 0.54 1.00
2.TRI BACK 7037. 3247.12 95.34 0.40 0.72
3.FINAL 7037. 3238.82 95.34 0.40 0.71

24HR FORECAST
MODEL # DIST WS LAT LON

1.C7-RRY 6344. 23367.53 238.73 2.71 5.57
2.TRI BACK 6326. 16781.12 238.18 2.03 3.80
3.FINAL 6324. 16754.41 238.30 2.03 3.79

48HR FORECAST
MODEL # DIST WS LAT LON

1.CURRY 5070. 110544.56 460.95 11.64 27.98
2.TRI BACK 4932. 85178.73 466.26 9.75 20.24
3.FINAL 4935. 85641.90 466.33 9.84\ 20.38

72HR FORECAST
MODEL # DIST WS LAT LON

1.CURRY 4029. 244080.98 587.57 23.42 65.04
2.TRI BACK 3794. 198853.80 609.14 21.50 49.44
3.FINAL 3785. 199112.98 609.61 21.41 49.86
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Table G.2. Summary Statistics of Mean Errors (Standard Deviations)

WS MATRIX: WS BACK (351 storms used in parameter estimation)
DATA: .ENTIRE DATA BASE (395 storms)

6HR FORECAST
MODEL IDIST WS LAT LON

1.CURRY 7394. 17.0(24.3) -0.2(5.8) 0.1(0.3) -0.1(0.4)
2.TRI BACK 7394. 14.0(22.1) -0.2(5.8) 0.0(0.3) 0.0(0.4)
3.FINAL 7394. 13.8(22.1) --0.2(5.8) 0.0(0.3) 0.0(0.4)

12HR FORECAST
MODEL I DIST WS LAT LON

1.CURRY 7038. 48.7(45.2) -0.4(9.8) 0.2(0.7) -0.3(1.0)
2.TRI BACK 7037. *41.4(39.2) -0.4(9.S) 0.0(0.6) 0.0(0.8)
3.FINAL 7037. 41.3(39.2) -0.4(9.8) 0.0(0.6) 0.0(0.8)

24HR FORECAST
MODEL IDIST WS LAT LON
1.CURRY 6344. 119.8(94.9) -0.2115.5) 0.5(1.6) -0.7(2.3)
2.TRI BACK 6326. 103.3(78.1) -O0.2 (-.S 4 j 0.0(1.4) 0.0(1.9)
3.FIKAL 6324. 103.3(77.9) -0.2(La5.4) -.0.1(1.4) 0.0(1.9)

48HR FORECAST
MODEL IDIST WS LAT LON

1.CURRY 5070. 268.9(195.5) 1.3(21.4) 1.2(3.2) -1.7(5.0)
2.TRI BACK 4932. 241.6(163.7) 1.4(21.5) -0.3(3.1) 0.1(4.5)
3.FINAL 4935. 242.7(163.5) 1.4(21.6) -0.3(3.1) 0.1(4.5)

721M FORECAST
MODEL IDIST ifS LAT LON

1.CURRY 4029. 404.6(283.6) 2.8(24.1) 1.7(4.5) -2.7(7.6)
2.TRI BACK 3794. 375.5(240.6) 3.2(24.5) -0.7(4.6) 0.5(7.0)
3.FINAL 3785. 376.1(240.2) 3.1(24.5) -0.7(4.6) 0.4(7.0)
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Table G.3. Summary Statistics of Mean Squared Prediction Errors (MSPR)

WS MATRIX: WS FINAL (395 storms used in parameter estimation)
DATA: ENTIRE DATA BASE (395 storms)

6HR FORECAST
MODEL I DIST WS LAT LON

1.CURRY 7394. 879.82 33.51 0.11 0.21
2.TRI BACK 7394. 681.19 33.51 0.08 0.16
3.FINAL 7394. 678.05 33.51 0.08 0.16

12HR FORECAST
MODEL # DIST WS LAT LON

1.CURRY 7038. 4408.62 95.55 0.54 1.00
2.TRI BACK 7037. 3247.01 95.35 0.40 0.72
3.FINAL 7037. 3238.83 95.36 0.40 0.71

24HR FORECAST
MODEL # DIST WS LAT LON

1.CURRY 6344. 23367.53 239.11 2.71 5.57
2.TRI BACK 6325. 16774.70 238.56 2.03 3.80
3.FINAL 6324. 16752.35 238.61 2.03 3.79

48HR FORECAST
MODEL # DIST WS LAT LON

1.CURRY 5070. 110544.56 464.12 11.64 27.98
2.TRI BACK 4932. 85170.31 469.19 9.74 20.24
3.FINAL 4935. 85617.04 469.15 9.83 20.37

72HR FORECAST
MODEL # DIST WS LAT LON

1.CURRY 4029. 244080.98 591.41 23.42 65.04
2.TRI BACK 3796. 198934.52 611.48 21.49 49.50
3.FINAL 3785. 199085.08 612.16 21.40 49.85
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Table GA. Summary Statistics of Mean Errors (Standard Deviations)

WS M4ATRIX: WS FINAL (395 storms used in parameter estimation)
DATA: ENTIRE DATA BASE (395 storms)

6HR FORECAST
MODEL # DIST WS LAT LON

1.CURRY 7394. 17.0(24.3) -0.2(5.8) 0.1(0.3) -0.1(0.4)
2.TRI BACK .7394. 14.0(22.1) -0.2(5.8) 0.0(0.3) 0.0(0.4)
3.FINAL 7394. 13.8(22.1) -0.2(5.8) 0.0(0.3) 0.0(0.4)

12HR FORECAST
MODEL I DIST WS LAT LON

1.CURRY 7038. 48.7(45.2) -0.3(9.8) 0.2(0.7) -0.3(1.0)
.2.TRI BACK 7037. 41.4(39.2) -0.3(9.8) 0.0(0.6) 0.0(0.8)
3.FINAL 7037. 41.3(39.2) -0.3(9.8) 0.0(0.6) 0.0(0.8)

24HR FORECAST
MODEL IDIST WS LAT LON

1.CURRY 6344. 119.8(94..9) -0.1(15.5) 0.5(1.6) -0.7(2.3)
2.TRI BACK 6325. 103.3(78.1) -0.1(15.4) 0.0(1.4) 0.0(1.9)
3.FINAL 6324. 103.3(77.9) -0.1(15.4) -0.1(1.4) 0.0(1.9)

48HR FORECAST
MODEL # DIST WS LAT LON

1.CURRY 5070. 268.9(195.5) 1.6(21.5) 1.2(3.2) -1.7(5.0)
2.TRI BACK 4932. 241.6(163.7) 1.6(21.6) -0.3(3.1) 0.1(4.5)
3.FINAL 4935. 242.7(163.4) 1.6(21.6) -0.3(3.1) 0.1(4.5)

72HR FORECAST
MODEL # DIST WS LAT LON

1.CURRY 4029. 404.6(283.6) 3.1(24.1) 1.7(4.5) -2.7(7.6)
2.TRI BACK 3796. 375.6(240.6) 3.5(24.5) -0.7(4.6) 0.5(7.0)
3.FINAL 3785. 376.1(240.1) 3.4(24.5) -0.7(4.6) 0.4(7.0)
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Appendix H. FORTRAN for Forecasting Model

C FORECASTING HURRICANE TRACKS IN DATA BASE FORM
C Captain Timothy Mott
C
C Date Last Modified: 6 February 1993
C
C Purpose: The purpose of this code is to forecast the
C latitude, longitude and wind speeds of hurricane tracks up to
C landfall. The forecasts are made up to 72 hours. The basic
C structure of the program follows this outline
C
C (1) Read in hurricane data matrix
C (2) Set land fall boundary for data set
C (3) Read in model coefficients for position forecasting model
C (4) Read in model coefficients for wind speed forecasting
C model
C (5) Make forecasting data matrix (lagged, present and
C forecast value storage)
C (6) Forecast 6 hour position report
C (7) Repeat (6) 12 times to get 72 hour forecast
C (8) Calculate error statistics
C (9) Report error statistics
C (10) Report forecasts (6, 12, 24, 48, and 72 hour)
"C
C Important variables
C
C N: The number of position reports in the aata base
C STM: the number of storms
C
C BASE(15000,10): The data base of hurricane tracks
C BASE(*,l): Hurricane storm ID
C BASE(*,2): Report date
C BASE(*,3): Report time
C BASE(*,4): Report latitude
C BASE(*,5): Report longitude
C BASE(*,6): Report maximum sustained wind speed
CC BOUND: The East Coast landfall boundary line

C
C FORE(15000,60): Each row contains the one through
C six lag values, present value, and 12 forecasted values (6
C through 72 hours) of latitude longitude and wind speed.
C -999 is used to mark as a missing value
C
C COEF(20,20): This is the matrix of position forecast
C model coefficients
C
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C COEF2(20,20): This is the matrix of wind speed forecast
C model coefficients

C D6: The great circle distance (GCD)
C
C TER(A,B): is the GCD forecast error of report A of the Bth
C forecast
C
C SUMERR(B,D): The sum of the position GCD forecast errors (D=I)
C The number of forecasts (D=2)
C The mean (D=3)
C The variance (D=4)
C The standard deviation (D=5)
C The sum of the squared error (D--6)
C
C LAERR*(B,D): same as SUMERR but for latitude band (*)
C
C WSERR(B,D): same as SUIIERR but for wind speed
C
C LWERR*(B,D): same as WSERR but for latitude band (*)
C

program FORECASTER

INTEGER N, STM, ID
INTEGER J, K, I, M,
NEWST, COUNT

REAL BASE(15000,10), FORE(15000,60)
REAL COEF(20,20), COEF2(20,20)
"REAL LAERR1(7,7), LAERR2(7,7), LAERR3(7,7)
REAL LAERR4(7,7), LAERR5(7,7)
REAL LWERR1(7,7), LWERR2(7,7), LWERR3(7,7)
REAL LWERR4(7,7), LWERR5(7,7), WSERR(5,6)
RE•L SUMERR(5,6), TER(15000,5), WER(15000,5)
REA1L PIR, D1, D2, D3, D4, D6, D7

CHARACTER*20 NEWFL1, NEWFL2
CHARACTER*20 NEWFL3, NEWFL4, NEWFL5
CHARACTER*20 OLDFIL

INTRINSIC ACOS, SIN, COS

C GET THE HURRICANE TRACK DATA
********* ** ******************w**** ********** ******* ******* * *

WRITE (*,001)
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001 FORMAT(1X,'FILE NAME OF DATA FILE TO BE FORECASTED?')

READ(*, '(A20)') OLDFIL

OPEN(UNIT=23, FILE=OLDFIL, STATUS='OLD', IOSTAT=IERROR, ERR=100)

WRITE(*,002)
002 FORMAT(1X,'FILE IS OPEN.')

DO 10 N = 1, 10000, 1

READ(23, *, END=20) BASE(N,1), BASE(N,2), BASE(N,3),
+ BASE(N,4), BASE(N,5), BASE(N,6)

l0 CONTINUE

20 WRITE(*,21)
21 FORMAT(1X,'END OF FILE')

CLOSE(23)

95 WRITE(*,96) N
96 FORMAT(1X,'THE NUMBER OF CASES IS :', I8)

GO TO 120

100 WRITE(*,101) IERROR
101 FORMAT(' *** CANNOT OPEN FILE *** ', I8)

C ****** STORM COUNT ******

120 STM=I
DO 380 K = 1,N,1

BASE(K,7)=STM
J=K+1

IF( (BASE(K,1) .GT.0) .AND. (BASE(K,1) .NE.BASE(J,1) ))STM=STM+I

380 CONTINUE

WRITE(*,399) STM
•399 FORYAT(iX,'THE NUMBER OF STORMS IS :', I8)

WRITE(*,98) N
398 FORMATIX.-'THE N IS :', 18)

C ***** THIS ASSUMES THAT THE DATA IS IN THE NO DECIMAL PLACE
C ***** FORMAT

"DO 1190 K = 1, N, 1
BASE(K,4)=BASE(K,4)/10.0
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BASE(K,5)=BASE(K, 5)/10.0
1190 CONTINUE

C SET THE LANDFALL BOUNDARY

DO 1200 K = 1, N, 1
BOUND = (-14.0/15.0)*BASE(K,5)-BASE(K,4)+11O. 33
IF ((BASE(K,5).LE.70.0).AND.(BASE(K,4).LE.45.0))THEN
BASE(K,7) = 0.0
ELSE
IF ((BASE(K,5).LE.80.0).AND.(BASE(K,5).GT.70.0).AND.

+ (BOUND.GE.0.0))THEN
BASE(K,7) = 0.0

ELSE
IF((BASE(K,5).LE.100.0).AND.(BASE(K,4).LE.31)) THEN
BASE(K,7) =0.0

ELSE
BASE(K,7) =1.0

ENDIF
ENDIF

ENDIF

1200 CONTINUE

DO 1210 K =1, N, 1
L = K+1
IF(BASE(Lý,1) .EQ.BASE(K,1) )THEN

IF(BASE(K,7) .EQ.'1.0)THEN
BASE(L,4) = -999
BASE(L,5) = -999

ELSE
BASE(L,4)=BASE(L,4)
BASE(L,5)=BASE(L,5)

ENDIF
ELSE

BASE(L,4)=BASE(L,4)
BASE(L,5)=BASE(L,5)

ENDIF
1210 CONTINUE

C GET THE MATRIX THAT HAS THE POSITION FORECASTING COEFFICIENTS

WRITE (*,501)
501 FORMAT(1X,'FILE NAME OF MATRX WITH THE FORECASTING

+COEFFICIENTS?')
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READ(*, '(A20)') OLDFIL

OPEN(UNIT=24 ,FILE=OLDFIL, STATUS='OLD', IOSTAT=IERROR, ERR=500)

WRITE(*, 502)
502 FORMAT(1X,'FILE IS OPEN.')

DO 510 M 1, 16, 1

READ(24, *, END=520) COEF(H,1), COEF(M,2), COEF(M,3),
+ COEF(H,4), COEF(M,5), CoEF(H,6), COEF(M,7), COEF(M,8),
+ COEF(M,9), COEF(H,10), COEF(M,11), COEF(M,12), COEF(M,13',,
+ COEF(H,14)

510 -CONTINUE

520 WRITE(*,521)
521 FORMAT(1X,'END OF FILE')

CLOSEC 24)

GO TO 900

500 WRITE(*,507)IERROR
507 FORMAT('*** CANNOT OPEN FILE ***',18)

C GET THE MATRIX THAT HAS THE WIND SPEED FORECASTING COEFFICIENTS

900 WRITE (*,901)
901 FORMAT(lX,'FILE NAME OF HATRX WITH THE WS COEFFICIENTS?')

READ(*, '(1,20)". OLDFIL

OPEN (UNIT--44, FILE=OLDFIL, STATUS='OLD',£LOSTAT=IERROR, ERR=999)

WRITE(*,902)

902 FORHAT(lX,'FILE IS OPEN.')

DO 910 H r 1, 16, 1

READ(44, *, END=520) COEF2(M,1), COEF2(H,2), COEF2(H,3),
+ COEF2(M,4), COEF2(M,5), COEF2(M,6), COEF2(H,7)

910 CONTINUE

92(l WRITE(*,921)
921 FORMAT(1X,'END OF FILE')

CLOSEC 44)
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7- 7. 7 V7 77

GO TO 922

999 WRITE(*,907)IERROR
907 FORMAT(#*** CANNOT OPEN WS FILE ***',IS)

C BUILD THE FORECAST MATRIX

922 DO 400 I-1, N, 1
DO 410 J-1, 60, 1

FORE(I,J)=-999
410 CONTINUE
400 CONTINUE

C ***PUT PRESENT VALUES INTO FORECAST MATRIX
DO 430 I-1,N,1

FORE(I,20)=BASE(I,1)
FOr 3(I,7)=BASE(I,4)
FORE(I,27)-BASE(I,5)
FORE(I,47)'=BASE(I,6)

430 CONTINUE
C ***** LAG 1

ID - FORE(1,20)
DO 440 I-2,N,1
IF(FORE(I,20) .EQ.ID)THEN

FORE(I,6)=BASE(I-1,4)
FORE(I,26)=BASE(I-1,5)
FORE(I,46)=BASE(I-1 ,6)

ELSE
ID -FORE(I,20)

ENDIF
440 CONTINUE
C ***** LAG 2

ID - FORE(2,20)
COUNT = 0
DO 450 Iinl,N,1

IF(FORE(I,20) .EQ.ID)THEN
IF (COUNT.LT.2)THEN
COUNT - COUNT+1
ELSE
FORE(1,5)=T3ASE(I-2,4)

FORE(I,25)-BASE(I-2,5)
FORE(I,45)=BASE(I-2,6)

ENDIF
ELSE

ID -FORE(I,20)
COUNT-i

ENDIF
450 CONTINUE
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C ***LAG 3
ID =FORE(3,20)

COUNT=0
DO 460 I=1,N,1

IF(FOPE(I,20) .EQ.ID)THEN
IF (COUNT.LT.3)THEN

COUNT COUNT+1
ELSE
FORE(I,4)=BASE(I-3,4)

FORE(I,24)=BASE(I-3 ,5)
FORE(I, 44 )=BASE( 1-3,6).

ENDIF
ELSE

ID =FORE(I,20)
COUNT=l

ENDIF
460 CONTINUE

C ***** LAG 4
ID = FORE(4,20)

COUNT = 0
DO 470 I=1,N,1

IF(FORE(I,20) .EQ.ID)THEN
IF (COUNT.LT.4)THEN

COUNT = COUNT+i
ELSE

FORE(I,3)=BASE(I-4,4)
FORE(I,23)=BASE(I-4,5)
FORE(I,43)=BASE(I-4,6)

END IF
ELSE

ID = FORE(I,20)
COUNT=1

ENDIF
470 CONTINUE
C ***** LAG 5

ID - FORE(5,20)
COUNT=0

DO 480 I=1,N,1
IF(FORE(I,20) .EQ.ID)THEN

IF (COUNT.LT.5)THEN
COUNT - COUNT+1
ELSE
FORE(I,2)=BASE(I-5,4)

FORE(I,22)=BASE(I-5,5)
FORE(I,42)=BASE(I-5,6)

ENDIF
ELSE

ID -FORE(I,20)
COUNT1l

ENDIF
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480 CONTINUE
C ***** LAG 6

ID = FORE(6,20)
COUNT=0

DO 490 I=7,N,1
IF(FORE(I,20) .EQ.ID)THEN

IF (COUNT.LT.6)THEN
COUNT = COUNT+l
ELSE
FORE(I,1)=BASE(I-6,4)

FORE(I,21)=BASE(I-6,5)
FORE(I,41)=BASE(I-6,6)

ENDIF
ELSE

ID =FORE(I,20)
ENDIF

490 CONTINUE

C FORECAST USING THE POSITION AND WS COEFFICIENTS
C THIS IS REPEATED FOR 12 FORECASTS (#THROUGH 72 HOURS)

ID -0

'.1NEWST =0

DO 5.50 1=1,N,l

C ***SKIP FIRST.SIX OBS OF A STORM -- TO HAVE ENOUGH INFO
C ***TO FORECAST

IF(FORE(I,-20).EQ.Irs)THEN
NEWST=NEWST+l

/ ELSE
ID = FORE(I,20)
NEWST=1

ENDIF-

C ***DO NOT FORECAST IF OUT OF RANGE

IF(NEWST.LT.7)GO TO 550

/ .C ***DO FORECASTS 6 THROUGH 72 HOURS

DO 560 J=1,12,1

C ***SKIP FORECAST IF THE TIME AHEAD IS NOT IN DATA
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C ***THIS IS DONE BECAUSE OTHERWISE THERE WOULD BE NO
C ***WAY TO CHECK ACCURACY OF FORECAST

IF(FORE(I+J,20).NE.FORE(I,20))GO TO 560

C ***SKIP FORECAST IF INFO USED IS NONEXSISTENT
FLAG=0
DO 561 K=1,7,1
IF( (FORE(I,7+J-K) .LT.0) .OR. (FORE(I,27+J-K) .LT.0) )FLAG=1

561 CONTINUE
IF(FLAG.EQ.1)GO TO 560

C ***GET PROPER LATITUDE BAND FOR FORECAST MODEL
K=0

IF(FORE(I,6+J) .LT.15.O)K=1
IF( (FORE(I,6+J) .LT.20.0) .AND. (FORE(I,6+J) .GE.15.0) )K=2
IF( (FORE(I,6+J) .LT.25.0) .AND. (FORE(I,6+J) .GE.20.O) )K=3
IF( (FORE(I,6+J) .LT.30.O) .AND. (FORE(I,6+J) .GE.25.O) )K=4
IF( (FORE(I,6+J) .LT.35.O) .AND. (FORE(I,6+J) .GE.30.0) )K=5
IF((FORE(I,6+J).LT.40.0).AND.(FORE(I,6+J).GE.35.O))K=6
IF( (FORE(I,6+J) .LE.45.O) .AND. (FORE(I,6+J) .GE.40.O) )K=7
IF(K.EQ.O)THEN

FORE( I, 7+J)=-999
FORE(I,27+J)=-999

GO TO 560
ENDIF

C *** FORECAST 'LATITUDE USING INPUTTED FORECAST MODEL
COEFFICIENTS

FORE(I ,7+J)=FORE(I ,6+J)
++COEF(1,K)*(FORE(I,6+J)-FORE(I,5+J))
++COEF(2,K)*(FORE(I,5+J)-FORE(I ,4+J))
++COEF(3,K)*(FORE(I,4+J)-FORE(I,3+J))
++COEF(4,K)*(FORE(I,3+J)-FORE(I, 2+J))
++COEF(5 ,K) *(FORE( I, 2+J)-FORE( I, i+J) )

.++COEF(6,K)*(FORE(I,26+J)-FORE(I,24-IJ))
++COEF(8,K)*(FORE(I,24+J)-FORE(I,24+J))
++COEF(9gK)*(FORE(I,23+J)-FORE(I,22+J))
++COEF(10,K)*(FORE(I,23+J)-FORE(I,22+J))
++COEF(11,K)*(FORE(I,46+J))FR(,2+)
++COEF(11,K)*(FORE(I,45+J))
++COEF(13,K)*(FORE(I,44+J))
++COEF(14,K)*(FORE(I,43+J))
++COEF(15,K)*(FORE(I,42+J))

++COEF( 16 ,K)
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C **** FRECAST LONGITUDE USING INPUTTED FORECAST MODEL
COEFFICIENTS

FORE(I 27+J)=FORE(I,26+J)
++COEF(1 ,K+7)*(FORE(I,6+J)-FORE(I,5+J))
+-tCOEF(2,K+7)*(FORE(I,5+J)-FORE(I,4+J))
* ++COEF(3,K+7)*(FORE(I,4+J)-FORFE(I,3+J))
++COEF(4,K+7)*(FORE(I,3+J)-FORE(I,2+J))
++COEF(5,K+7)* (FORE( I,2+J)-FORE( I,1+J))
++COEF(6,K+7)*(FORE(I,26+J)-FORE(I,25+J))
++COEF(7,K+7)*(FORE(I ,25+J)-FORE(I,24+J))
++COEF(8,K+7)*(FORE(I,24+J)-FOR2E(I,23+J))
++COEF(9,K+7)*(FORE(I,23+J)-FORE(1,22+J))
* ++COEF(10,K+7)*(FORE(I,22+J)-FORE(I,21+J))
++COEF(11,K+7)*(FORE(I,46+J))
++COEF(12,K+7)*(FORE(I,45+J))
++CQEF(13,K+7)*(FORE(I,44+J))
++COEF(14,K+7)*(FORE(I,43+J))
++COEF(15,K+7)*(FORE(I,42+J))
++COEF(16,K+7)

C ***FORECAST WIND SPEED USING INPUTTED FORECAST, MODEL
COEFFICIENTS

FORE(I,47+J)=COEF2( 1,K)*(FORE(I,6+J)-FORE(I,5+J))
++COEF2(2,K)*(FORE(I,5+J)-FORE(I,4+J))
++COEF2(3,K)*(FORE(I,4+J)-FORE(I,3+J))
++COEF2(4,K)*(FORE(I,3+J)-FORE(I,2+J))
*++COEF2(5,K)*(FORE(I,2+J)-FORE(I,1+J))
++COEF2(6,K)*(FORE(I,26+J)-FORE(I,25+J))
++COEF2(7,K)*(FORE(I ,25+J)-FORE(I,24+J))
++COEF2(8,K)*(FORE(I,24+J)-FORE(I,23+J))
++COEF2(9,K)*(FORE(I,23+J)-FORE(1,22+J))
++COEF2(10,K)*(FORE(I,22+J)-FORE(I,21+J))
++COEF2(11,K)*(FORE(I,46+J))
++COEF2(12,K)*(FORE(I,45+J))
++COEF2(13,K)*(FORE(I,44+J))

-:++COEF2(14,K)*(FORE(I,43+J))
++COEF2(15,K)*(FORE(I,42+J))
++COEF2 (16 ,K)

560 CONTINUE
550 CONTINUE

C GETTING STATISTICS ON THE FORECAST ERRORS

ID = 0
DO 600 I=1,N,l

C ***SET FIRST SIX TO -999
IF(FORE(I,20) .EQ.ID)THEN

NEWST=NEWST+1

126



ELSE

ID =FORE(I,20)

ENDIF

IF(NEWST..LT.7)THEN
TER(I,1)=-999
TER(I, 2)=.-999
TER(I,3)=-999
TER(I,4)=-999
TER(I,5)=-999
GO TO 600

ENDIF

C ***DO NOT GET FORECAST ERROR IF OUT OF RANGE

IF(FORE(I,7) .GT.45.0)THEN
TER(I,1)=-999
TER(I,2)=-999
TER(I, 3)=-999
TER(I,4)=-999
TER( I, 5)=-999
GO TO 600

ENDIFC ***** CHOOSE PROPER FORECAST MODEL
K=0

IF(FORE(I,7) .LT.15.0)K=1
IF((FORE(I,7).LT.20.0).AND.(FORE(I,7).GE.15.0))K=2
IF( (FORE(I,7) .LT.25.0) .AND. (FORE(I,7) .GE.20.O) )K=3
IF((FORE(I,7).LT.30.0).AND.(FORE(I,7).GE.25.0))K=4
IF((FORE(I,7) .LT.35.0) .AND. (FORE(I,7) .GE.30.0))K=5
IF((FORE(I,7) .LT.40.0) .AND. (FORE(I,7) .GE.35.0) )K=6
IF((FORE(I,7) .LE.45.0) .AND. (FORE(I,7) .GE.40.0))K=7
IF(K.EQ.0)THEN

TER(I,1)=-999
TER( 1,2 )=-999
TEE (1,3) =- 999
TER(I,4)=-999
TER(I,5)=-999
GO TO 600

END IF

PIR - 180.0/(ACOS(-1.00))

C ***6 HOUR FORECAST ERROR

IF((FORE(I,20).EQ.FORE(I+1,20)).AND.(FORE(I,8).GE.o.o)
+.AND. (FORE(I+1,7) .GE.0.0) .AND. (FORE(I,28) .GT.0.0) .AND.
+(FORE(I+1,27) .GT.0.0) )THEN
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C ***GREAT CIRCLE DISTANCE BETWEEN ACTUAL AND FORECASTED

D1=STN(FORE(I ,8)/PIR)
D3=SIN(FORE(I+1 ,7)/PIR)
D2=COS(FORE( 1,8)/PIR)
D4=COS (FORE (1+1,7) /PIR)
D6=COS( (FORE(I+1,27)-FORE(I,28) )/PIR)

IF( (D1*D3+D2*D4*D6) .GE.O.99999)THEN
D7=0 .0
ELSE
D7=ACOS (D1*D3+D2*D4*D6)
ENDIF

TER(I,1) =(b7*PIR)*60.0

SUMERR (1,1) =SUMERR (1,1) +TER (1,1)
SUMERR(1,2)=SUMERR(1,2)+1
SUMERR (1,6) =TER (1,1) *TER (1,1) +SUMERR (1,6)

LAERR1(K,1)=LAERR1(K,1)+TER(I,l)
LAERR1(K,2)=LAERR1(K,2)+1
LAERR1 (K, 7) =TER (1,1) *TER (1,1) +LAERR1 (K, 7)

WER(I,l) =(FORE(I,48)-FORE(I+1,47))

WSERR(1,1)=WSERR(1,1)+WER(I,1)
WSERR(1,2)=WSERR(1,2)+1
WSERR(1,6)=WER(I,1)*WER(I,1)+WSERR(1,6)

LWERR1(K,1)=LWERR1(K,1)+WER(I,1)
LWERR1(K,2)=LWERR1(KI2)+1
LWERR1(K,7)=WER(I,1)*WER(I,1)+LWERR1(K,7)

ELSE
TER(I,1)=-999
WER(I,1)=-999

A ENDIF

C ***12 HOUR FORECAST ERROR

IF((FORE(I,20).EQ.FORE(I+2,20)).AND.(FORE(I,9).GE.o.o)
+.AND.(FORE(I+2,7).GE..0.).AND.(FORE(I,29).GT.O.O).AND.
+(FORE(I+2,27).GT.O.O))THEN

C ***GREAT CIRCLE DISTANCE BE;TWEEN ACTUAL AND FORECASTED

Dl=(SIN(FORE(I,9)/PIR))
D3=(SIN(FORE(I+2 ,7)/PIR))
D2=(COS(FORE(I,9)/PIR))
D4=(COS(FORE(I+2,7)/PIR))
D6=(COS((FORE(I+2,27)-FORE(I,29))/PIR))
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IF( (D1*D3+D2*D4*D6) .GE.O.99999)THEN
D7=0.0
ELSE
D7=ACOS ( D*D3+D2*D4*D6)
ENDIF

TER(I,2) = (D7*PIR)*60.O

SUHERR(2,1)=SUMERR(2,1)+TER(I,2)
SUMERR(2,2)=SUHERR(2,2)+l
SUMERR(2,6)=TER(I,2)*TER(I,2)+SUMERR(2,6)

LAERR2(K,1)=LAERR2(K,1)+TER(I,2)
LAERR2(K, 2)=LAERR2(K,2)+1
LAERR2(K,7)=TER(I,2)*TER(I,2)+LAERR2(K,7)

WER(I,2) =(FORE(I,49)-FORE(I+2,47))
WSERR(2,1)=-WSERR(2,1)+WER(I,2)
WSERR(2,2)=WSERR(2,2)+1
WSERR(2,6)=WER(I, 2)*WER(I, 2)+WSERR(2,6)

LWERR2 (K, 1)=LWERR2 (K, 1)+WER( I,2).

C 2 WHOR FRECAST =ERROR ,2+

IF((FRE2K7=E(I,20) EQ.OR (I+4,20 ) .AN. (RE(I,11) .EO

+(O E(I+4,27)=.T..O9 )HE

C D4=HOUR(FORECAST1)ERROR

Dl=(CSI(FORE(1,11)/PIR))

D6=(COS((FORE(I+4,27)-FORE(I,31))/PIR))

IF((D1*D3+D2*D4*D6) .GE.O.99999)THEN
D7=0 .0
ELSE
D7=-ACOS(D1*D3+D2*D4*D6)
ENDIF
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TER(I,3) =(D7*PIR)*60.O

SUMERR (3,1) =SUMERR (3,1) +TER (113)
SUMERR(3,2)=SUMERtR(3 ,2)+1

-SUMERR(3,6)=TER(I,3)*TER(I,3)+SUMERR(3,6)

LAERR3(K,1)=LAERR3(K,1)+TER(I,3)
LAERR3(K,2)=LAERR3(K,2)+l
LAERR3(K,7)=TER(I,3)*TER(I,3)+LAERR3(K,7)

WER(I,3) = ý(FORE(I,51)-FO RE(I+4,47)')
WSERR(3,1)=WSERR(3,1)+WER(I,3)
WSERR(3,2)=WSERR(3,2)+1
WSERR(3,6)=WER(I,3)*WER(I,3)+WSERR(3,6)

LWERR3 (K, 1)=LWERR3 (K, 1)+WER(I,3.)
LWERR3(K,2)=LWE1RR3(K,2)+1
LWERR3(K,7)=WER(I,3)*WER(I,3)+LWERR3(K,7)

ELSE
TER(I,3)=-999
WER(I,3)=-999

ENDIF

C ***48 HOUR FORECAST ERROR

IF( (FORE(I,20) .EQ.FORE(I+8,20) ).AND. (FORE(I,15) .GE.O.O)
- I ~+.AND. (FORE(I+8,7) .GE.O.O) .AND. (FORE(I,25) .GT.O.O) .AND.

+(FORE(I+8,27) .GT.O.O) )THEN

C ***GREAT CIRCLE DISTANCE BETWEEN ACTUAL AND FORECASTED

Dl=(SIN(FORE(I,15)/PIR))
D3=(SIN(FORE(I+8,7)/PIR))
D2=(COS(FORE(I,15)/PIR))
D4=(COS(FORE(I+8,7)/PIR))
D6=(COS((FORE(I+8,27)-FORE(I,35))/PIR))

IF( (D1*D3+D2*D4*D6) .GE.O.99999)THEN
D7=0.0

ELSE
D7=ACOS(Dl*D3+D2*D4*D6)
ENDIF

TER(I,4) =(D7*PIR)*60.0

SUMERR(4,1)=SUMERR(4,1)+TER(I,4)
SUMERR(4,2)=SUMERR(4,2)+l
SUNERR (4,6) =TER (I,4) *TER (1,4) +SUMERR (4,6)
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LAERR4 (K, 1)=LAERR4 (K,1)+TER( I,4)
LAERR4(K,2)=LAERR4(K, 2)+1
LAERR4(K,7)~-TER(I,4)*TER(I,4)+LAERR4(K,7)

WER(I,4) =(FORE(I,55)-FORE(I+8,47))
WSERR(4,1)=WSERR(4,1)+WER(I,4)
WSERR(4,2)=WSERR(4,2)+1
WSERR(4,6)=tfER(I,4)*WER(I,4)+WSERR(4,6)

LWERR4 (K, 11=LWERR4 (K, 1)+WER(I,4),
LWERR4(K,2)=LWERR4(K,2)+l
LWERR4 (K, 7) =WER (1,4) *WER (1,4) +LWERR4 (K, 7)

ELSE
TER(I,4)=-999
WER(I,4)=-999

ENDIF

C ** 72 HOUR FORECAST ERROR

IF((FORE(I,20).EQ.FORE(I+12,20)).AND.(FORE(I,1.:).GE.O.O)
+.AND. (FORE(I+12,7) .GE.O.O) .AND. (FORE(I,39) .GT.O.O0 .AND.
+(FORE(I+12,27) .GT.O.O) )THEN

C ***** GREAT CIRCLE DISTANCE BETWEEN ACTUAL AND FORECAMSTED

D1=(SIN(FORE(I,19)/PIR))
D3=(SIN(FORE(I+12,7)/PIR))
D2=(COS(FORE(I,19)/PIR))
D4=(COS(FORE(I+12,7)/PIR))
D6=(COS( (FORE(I+12,27)-FORE(I,39))/PIR))

IF( (Dl*D3+D2*D4*D6) .GE.O.99999)THEN
D7=0.0
ELSE
D7=ACOS ( D*D3+D2*D4*D6)

ENDIF

TER(I,5) =(D7*PIR)*60.O

SUMERR(5,l)=SUMERR(5,1)+TER(I,5)
. .* SUMERR(5,2)=SUHERR(5,2)+1

SUMERR(5,6)=TER(I,5)*TER(I,5)+SUMERR(5,6)

LAERR5 (K ,1)=LAERR5 (K, 1) 4TE R(I, 5)
LAERR5(K,2)=LAERR5(K,2)+1
LAERR5(K,7)=-TER(I,5)*TER(I,5)+LAERR5(K,7)
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WER(I,5) =(FORE(I,59)-FORE(I+12,47))
WSERR(5,1)=WSERR(5,1)+WER(I,5)
WSERR(5,2)=WSERR(5,2)+l
WSERR(5,6)=-WER(I,5)*WER(I,5)+WSERR(5,6)

LWERR5(K,1)=LWERR5(K,1)+WER(I,5)
LWERR5(K,2)=L-WERR5(K,2)+1
LWERR5(K,,7)=WER(I,5)*WER(I,5)+LWERR5(K,7)

ELSE
TER(I,5)=-999
WER(I,5)=-999

ENDIF

600 CONTINUE

DO 698 J=1,5,1

SUMERR(J,3)= StJMERR(J,1)/SUMERR(J,2)

SUHMER(J,4)=( (SUMERR(J,6)-( (SUMERR(J,3)**2)
+*SUMERR(J,2)) ))/( (SUMERR(J,2)-i))

SUMERR(J,5)=SUMERR(J,4)**0.5

WSERR(J,3)= WSERR(J,1)/WSERR(J,2)

WSERR(J,4)=( (WSERR(J,6)-( (WSERR(J,3)**2)
+*WSERR(J,2)) ))/( (WSERR(J,2)-1))

WSERR(J, 5)=WSERR(J,4)**0 .5

698 CONTINUE

* DO 810 J=1,7,1

LAERR1(J,3)=LAERR1(J,1)/LAERR1(J,2)
LAERR2(J, 3)=LAERR2(J, 1)/LAERR2(J, 2)
LAERR3(J,3)=LAE2RR3(J,1)/LAERR3(J,2)

* LAERR4(J,3)=LAERR4(J,1)/LAERR4(J,2)
LAERR5 (J, 3) =LAERR5 (J, 1) /LAERR5 (J, 2)

LAERR1(J,5)=(LAERR1(J,7)-(LAERR1(J,2)*(LAERR1(J,3)**2) ))/
+(LAERR1(J,2)-1)
LAERR2(J,5)=(LAERR2(J,7)-(LAERR2(J,2)*(LAERR2(J,3)**2)))/

+(LAERR2(J,2)-l)
LAERR3(J,5)=(LAERR3(J,7)-(LAERR3(J,2)*(LAERR3(J,3)**2)))/
+(LAERR3(J,2)-1
LAERR4(J,5)=(LAERR4(J,7)-(LAERR4(J,2)*(LAERR4(J,3)**2) ))/
+(LAERR4(J,2)-i)
LAERR5(J,5)=(LAERR5(J,7)-(LAERR5(J,2)*(LAERR5(J,3)**2)))/

+ (LAERR5 (J,2)-i)
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LAERR1(J,6)=LAERR1(J,5)**0.5
LAERR2(J,6)=LAERR2(J,5)**0.5

LAERR4(J,6)=LAERR4(J,5)**0.5
LAERR5(J,6)=LAERR4(J,5)**0.5

LWERR5(J,63)=LWERR1(J,51)/LWRR (J 2

LWERRI(J,3)=LWERR1(J,1)/LWERR2(J,2)
* LWERR2(J,3)=LWERR3(J,1)/LWERR3(J,2)

LWERR4 (J, 3)=~LWERR4 (J, 1) /LWERR4 (J, 2)
'V LWERR4(J,3)=LWERR4(J,1)/LWERR5(J,2)

LWERR1(J,5)=(LWERR1(J,7)-(LWERR1(J,2)*(LWERR1(J,3)**2)))/
+(LWERR1(J,2)-1)l
LWERR2(J,5)=(LWERR2(J,7)-(LWERR2(J,2)*(LWERR2(J;3)**2) ))/

+(LWERR2(J,2)-1)
LWERR3(J.5)=(LWERR3(J,7)-(LWERR3(J,2)*(LWERR3(J,3)**2)))/

+(LWERR3(J,2)-1)
LWERR4(J,5)=(LWERR4(J,7)-(LWERR4(J,2)*(LWERR4(J,3)**2) ))/

+(LWERR4(J,2)-1)
LWERR5(J,5)=(LWERR5(J,7)-(LWERR5(J,2)*(LWERR5(J,3)**2)) )/

+(LWERR5(J,2)-l)

LWERR1(J,611=LWERR1(J,5)**o.5
LWERR2(J,6)=LWERR2(J,5)**0.5
LWERR3(J,6)=LWERR3(J,5)**0. 5
LWERR4(J,6)=LWERR4(J,5)**O.5
LWERR5(J,6)=LWERR5(J,5)**0.5

810 CONTINUE

C REPORTING STATISTICS ON THE FORECAST ERRCRS

WRITE(*,700)
700 FORMAT('NAME OF FILE FOR OBS. FORECAST ERRORS?')

READ(C*, '(A)' )NEWFL1
OPEN(30,FILE=NEWFL1,STATUS='NEW')

WRITE(*,710)
710 FORMAT('NAME OF FILE FOR ERROR SUMMARY STATISTICS?')

READ(*, I(A) ')NEWFL2
OPEN( 31, FILE=NEWFL2, STATUS='NEW')

WRITE(*,711)
711 FORMAT( NAME OF- FLE FOR STORING LAT FORECASTS?')

READ(*,`(A)')NEWFL3
OPEN(32,FILE=NEWFL3,STATUS='NEW')
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WRITE(*7 -12)
if 712 FORMAT( 'NAME OF FILE FOR STORING LON FORECASTS?')

READ(*, '(A)')NEWFL4
OPEN( 33, FILE=NEWFL4, STATUS='NEW')

WR.ITE(*,713)
713 FORMAT('NAME OF FILE FOR STORING WS FORECASTS?')

READ(*, '(A) ')NEWFL5
OPEN( 34, FILE=NEWFL5 ,STATUS='NEW')

WRITE(31,730)'
WRITE(31,731)
WRITE( 31, 732)
WRITE(31,731)

WRITE(31,720) SUMERR(1,2), SUMERR(1,3), SIJMERR(1,5),
+WSERR(1,3), WSERR(1,5)

WRITE( 31, 731)

WRITE(31,725) SUMERR(2,2), SUMERR(2,3), SUMERR(2,5),
+WSERR(2,3), WSE1RR(2,5)

WRITE( 31, 731)

WRITE(31,726) SUMERR(3,2), SUMERR(3,3), SUMERR(3,5),
+WSERR(3,3), WSERR(3,5)

WRITE( 31, 731)

WRITE(31,727) SUMERR(4,2), SUMERR(4,3), SUMERR(4,5),
+WSERR(4,3), WSERR(4,5)

WRITE( 31, 731)

WRITE(31,728) SUMERR(5,2), SUHERR(5,3), SUMERR(5,5),
+WSERR(5,3), WSERR(5,5)

WRITE(31,731)

DO 719 K=1,7,1
WRITE(31,731)

W1ýITE(31,729)K
IE31,731)

WlaTE(31,731)

WR TE(31,72O) LAERR1(K,2), LAERR1(K,3), LAERR1(K,6),
+LWERR1( ~3), LWERR1(K,6)

WRI IE( 31, 731)

WRI rE(31,725) LAERR2(K,2), LAERR2(K,3), LAERR2(K,6),
+LWERR2(K,3), LWERR2(K,6)
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WRITEC 31,731)

WRITE(31,726) LAERR3(K,2), LAERR3(K,3), LAERR3(K,6),
+LWERR3(K,3), LWERR3(K,6)

WRITE(31,731)

WRITE(31,727) LAERR4(K,2), LAERR4(K,3), LAERR4(K,6),

+LWERR4(K,3), LWERR4(K,6)

WRITE (31 ,731)

WRITE(31,728) LAERR5(K,2), LAERR5(K,3), LAERR5(K,6),
+LWERR5(K,3), LWERR5(K,6)

WRITE(31,731)
WRITE (31,731)

719 CONTINUE

720 FORMAT(3X, '61R' ,6X,F8,3X,F9.4,3X,F9.4,3X,r9.4,3X,F9.4)
725 FORMAT(3X, '12HR' ,5X,F8,3X,F9.4,3X,F9.4,3X,F9.4,3X,F9.4)
726 FORMAT(3X, '24HR' ,5X,F8,3X,F9.4,3X,F9.4,3X,F9.4,3X,F9.4)
727 FORMAT(3X, '48HR' ,5X,F8,3X,F9.4,3X,F9.4,3X,F9.4,3X,F9.4)
728 FORMAT(3X, '721ffI',5X,F8,3X,F9.4,3X,F9.4,3X,F9.4.,3X,F9.4)
729 FORHAT('*****FORECAST ERRORRS FOR LAT BAND=',14)
730 FORMAT('*****OVERALL FORECAST ERROR SUMMARY')
731 FORMAT(' I

732 FORMAT('FORECAST',6X,'I OBS',7X,'NEAN',7X,'STDEV',
+6X,'WS MEAN',6X,AWS STDEV')

C REPORTING THE FORECASTS FOR LATITUDE, LONGITUDE, WIND SPEED
C AND THE GCD FORECAST!ERROR FOR EACH PEPORT

DO 740 J=1,N,1

WRITE(32,741)FORE(J,20),F'ORE(J, 7),FORE(J,8),
+FORE(J, 9) ,FORE(J, 11) ,FORE(J, 15) ,FORE(J, 19)

WRITE(33,741)FORE(J,20),FORE(J, 27),FORE(J,28),
+FORE(J, 29) ,FORE(J, 31) ,FORE(J, 35) ,FORE (J, 39)

WRITE(34,741)FORE(J,20),FORE(J, 47),FORE(J,48),
+FORE(J,49) ,FORE(J,51) ,FORE(J,55) ,FORE(J,59)

741 FORMAT(' ',7(F8.2,1X))
740 CONTINUE
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DO 750 J=1,N,1

WRITE(30,751)FORE(J,20), TER(J, 1),-
+ TER(J, 2), TER(J, 3), TER(J, 4), TER(J, 5)

751 FORMAT(' ',6(F8.2,lX))
750 CONTINUE

END

C***** END OF FORECASTING PAGA



Appendix L. Sample Hurricane Track Data Base

This is a sample of the best track data matrix used in this research, where each row
represents a 6 hour report. Best tracks are constructed in a careful post-storm analysis that
combines position data from all available sources. Some subjective smoothing is employed to
plot the best track.

Column 1: Report storm ID (the storm number and the year). For example, the first storm of
1986 would have an ID of 0186.

Column 2: Report DATE (mmdd). For example, if the report was taken on June 16th,. the
report DATE would be 0616.

Column 3: Report TIME in Zulu. For example, if the report was taken at midnight Zulu time,
the report TIME would be 0000.

Column 4: Report latitude (LAT) in north degrees. For example, if at the report the eye of the
hurricane had a latitude of 45.8 north degrees, the report LAT would be 458

Column 5: Report latitude (LON) in west degrees. For example, if at the report the eye of the
hurricane had a longitude of 88.6 west degrees, the report LON would be 886.

Column 6: Report maximum sustained wind speed (WS) in miles per hour. For example, if at
the report the hurricane had a maximum sustained wind speed of 130 miles per hour, the report
`WS would be 130.

A sample of the data:

0186 0608 00 352 739 45
0186 0608 06363 727 45
0186 0608 12 379 710 40
0186 0608 18 396 689 35
0286 0623 18 256 872 25
0286 0624 00 257 878 25
0286 0624 06 '260 884 25
0286 0624 12 264 889 30
0286 0624 18 266 895 40
0286 0625 00 267 903 45
0286 0625 06 268 910 50
0286 0625 12272 917 55
0286 0625 18 277 922 65
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